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Abstract—Most bit allocation algorithms for video are geared
toward optimizing the average frame distortion. However, video
sequences optimized this way may exhibit sudden changes in dis-
tortion, or “flicker,” which can significantly affect the perceived
quality of the sequence. An alternative approach is to minimize
the maximum frame distortion, which aims to produce a constant-
quality sequence, thus avoiding the flicker problem.

In this work, we present a new algorithm for constant-quality
video, called MultiStage. We first show how MultiStage works for
an embedded bit plane coder, and we then demonstrate that it can
be applied to traditional quantization-based coders, such as H.263
and H.264, in conjunction with a novel single-frame block-level
rate-distortion optimization algorithm based on multiple-choice
knapsack. We show that MultiStage achieves very good results,
both in terms of maximum distortion and average distortion.

Index Terms—Constant quality, H.263, H.264, rate control,
rate-distortion optimization (RDO), variable bit rate (VBR), video
coding.

I. INTRODUCTION

MANY applications, such as DVD players and streaming
Internet video, use variable bit rate compressed video

streams which can be encoded offline. Since these streams are
compressed once and then played back many times, speed of
encoding is less important than the quality achieved at a given
bit rate. Interframe bit allocation determines the number of bits
to allocate to each frame given a total bit budget for the entire
video. Some algorithms attempt to minimize the average distor-
tion of the video’s frames (e.g., [1]); other algorithms attempt to
minimize the maximum distortion of any frame (e.g., [2]); and
still others work to satisfy buffer constraints (e.g., MPEG TM 5
[3]).
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Fig. 1. Bit rate and quality (PSNR) of each frame of the News video at 100 kbps
and 30 fps after coding with GTV and applying (a) constant rate bit allocation
and (b) our new MultiStage algorithm. The top line tracks the PSNR of each
frame and the bottom line tracks the number of bytes allocated to each frame.
The stars indicate scene changes.

Embedded video coders allow for flexible bit allocation be-
cause we can specify the exact number of bits to allocate to each
frame, as opposed to adjusting quantizer step sizes as in coders
based on quantization. Some objectives are simple to achieve
under this framework. For instance, a common objective is to pre-
vent buffer underflow at the receiver. We assume the receiver has
a buffer which is filled at the constant bit rate of the channel,
and emptied at the variable bit rate of the video stream—i.e., de-
coding frame 1 removes bits from the buffer, decoding frame
2 removes bits from the buffer, etc. Underflow can be avoided
by simply allocating bits to each frame, where is the frame
rate. Unfortunately, a constant bit rate does not usually result in
constant quality, as can be seen in Fig. 1(a). Some frames re-
quire more bits to encode to the same quality because they are
poorly predicted or because they have less regularity.

These frame-to-frame variations in quality are undesirable
because they often appear as “flicker.” In this paper we pro-
pose MultiStage, a global interframe bit allocation algorithm
that achieves nearly constant video quality [see Fig. 1(b)]. The
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switch from a constant bit rate to a variable bit rate may force
a delay at the decoder to prevent buffer underflow. To combat
this, we discuss a buffer control modification to these algo-
rithms which allows the encoder to specify a maximum accept-
able delay. We first apply the algorithm using the University
of Washington’s Group Testing for Video (GTV) coder [4], an
embedded video coder. We then use MultiStage on the quanti-
zation-based coders H.263 and H.264.

In the next section, we discuss the background of the bit allo-
cation problem and related work. In Section III, we describe the
MultiStage algorithm and its application to the three different
video coders. Section IV contains our experimental results and
Section V, the conclusion and suggestions for future research.

II. BACKGROUND AND RELATED WORK

In this section, we formalize the interframe bit allocation
problem, give an overview of standard video compression
techniques and describe the GTV coder, H.263, and H.264.

A. Bit Allocation Problem

In the bit allocation problem, we are given frames
and a total bit budget . We choose a number

of bits to allocate to each frame such that .
The quality of each frame is a function of the
number of bits allocated to and to every other frame. If we
limit ourselves to only forward prediction, then is a function
only of the allocations to the current and previous frames—thus
we can write .

We also consider the case where we have a constraint that
we wish to avoid buffer underflow. (Another objective might
be to prevent buffer overflow, but since memory is inexpensive,
we can assume our buffer is big enough that overflow is not a
problem.) Streaming video applications typically use a buffer
on the receiving end to store incoming bits. The buffer is filled
at the constant rate of the incoming channel, and is emptied at
the variable rate of the video. Buffer underflow occurs if we
attempt to remove more bits than the buffer contains. To pre-
vent underflow, we introduce a start-up delay by preloading the
buffer. The initial buffer occupancy will then be the delay
times the rate of the constant bit rate channel . In other words,

. After each frame , we add bits to the buffer,
where is the frame rate, and remove bits. Thus, for ,
we have buffer occupancy

(1)

after frame . Underflow is prevented if the constraints
for all are satisfied. In other words, we need to ensure that
when the receiver is ready to decode frame , all of the bits that
it needs are in the buffer.

The frame level bit allocation problem has received a great
deal of attention in the literature. Mohr [5] showed that the gen-
eral bit-allocation problem is equivalent to the multiple-choice
knapsack problem, and is thus NP-hard. A number of authors
studied bit allocation in the context of image compression
[6]–[9].

More recent work examined the bit allocation problem in
the context of video compression. When frames are quantized
independently, it can be optimally solved using Shoham and
Gersho’s Lagrangian relaxation [7]. Most video coders, how-
ever, employ some form of predictive coding, resulting in inter-
frame dependencies. A naïve Lagrangian approach to the depen-
dent problem would be exponentially complex in the number of
frames, which is prohibitive.

Several authors attempt to reduce complexity through
pruning heuristics [10], by assuming finite memory and using
dynamic programming [11], or through gradient descent [12].
In all of the above, the complexity is heavily dependent (at
least quadratic and often exponential) on the prediction depth.
Others (e.g., [13]) rely on a model-based approach to come up
with a closed-form solution based on inexpensive preanalysis;
however, models simple enough for analysis tend to be inac-
curate. Another critical parameter is the number of operating
rate-distortion (R-D) points that is considered for each frame.

Almost all the work in this area has attempted to optimize the
average (or total) distortion of the sequence (MINAVE). While
this is typically easier to analyze, especially in the independent
case, it is not necessarily the best measure for perceptual quality.
A MINAVE optimized video sequence may exhibit sudden vari-
ations in fidelity, or “flicker,” which can be distracting.

Two alternative optimization goals, aimed at addressing this
issue, are minimizing the maximum distortion (MINMAX) or
distortion variation (MINVAR or MDV) objectives. Both met-
rics reduce quality variation between frames [14] but there is no
general agreement in the research community regarding which
is better. We target MINMAX because it is uniquely defined and
easy to minimize. On the other hand, MINVAR can be defined
in multiple ways (for example, as total variation or maximum
frame-to-frame variation) and it is not immediately obvious how
to minimize such a target.

Among those who target MINMAX, Schuster et al. use bi-
section to find the minimum distortion [11], while Wang and
Woods use a similar but model-based approach [15] and Lee and
Ortega iteratively modify the frame-level quantization param-
eter (QP) of the currently maximum-distortion frame [16]. Xie
and Zeng [17] allocate bits based on the scene complexity ratio
while Chen and Ngan [18] modify the distortion criteria and try
to reduce buffer delay. Hoang et al. [19] provide a framework
for lexicographic optimization, which is related to MINMAX,
while others attempt to optimize the MINVAR objective [20],
[21]. Many of the above are one-pass or real-time methods; we
are able to achieve closer to constant quality since our algorithm
is offline.

We measure quality in terms of peak signal-to-noise ratio
(PSNR). While this is quite common in the compression liter-
ature, PSNR is an imperfect measure, since frames may have
widely varying characteristics. For example, at a scene change,
equalizing PSNR may not correspond with the perception of
quality, due to the way the visual system processes abrupt
change. Our algorithm would work equally well with metrics
that measure perceptual quality, such as those proposed by the
VQEG in [22]. The result would be an equalization of quality
across frames, where quality is measured perceptually instead
of only objectively.
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B. Video Compression and Coders

Most modern video coders use a three step process to encode
each frame. The coder begins by running a motion compensa-
tion algorithm to generate a set of motion vectors which, when
applied to previous and/or future frames, generates a predicted
current frame. The difference between the predicted and actual
current frames is the residual. In the second phase, the coder
computes a block transform, such as the discrete cosine trans-
form (DCT), on the residual frame to concentrate most of the
energy in a few coefficients. In the last stage, the transformed
residual is encoded using a lossy compression scheme.

The GTV coder [4] is based on the Group Testing DCT Image
coder [23]. The GTV coder includes only forward prediction—
i.e., the motion compensation algorithm uses only the previous
frame to predict the current frame. Residual frames are trans-
formed using the 8 8 DCT, and the transformed residuals are
encoded using the bit plane coding and group testing process
described by Hong et al.[23]. For our purposes, the most im-
portant feature of bit plane coding is that it is embedded, which
allows the bit allocation algorithms to specify an exact size for
each frame.

Recent work investigates bit allocation methods for embedded
video coders. Cheng et al. [1] derive an MMSE bit allocation al-
gorithm for a wavelet-based coder using the Lagrangian method
and estimates of coding efficiency and frame dependency param-
eters for each frame. Yang and Hemami [2] were the first to pro-
pose a MINMAX algorithm for embedded video coders. Their
algorithm consists of an initial estimation stage for the first two
frames of every group of pictures (GOP), and an adaptive adjust-
ment stage for the subsequent frames of the GOP. Their initial
estimation stage inspired the MultiStage algorithm’s constant
quality stage (described in Section III). In Section IV-A, we ex-
perimentally compare MultiStage to their algorithm.

In quantization-based coders, it is not straightforward to pre-
cisely control the bit allocation per frame. Instead, the frames
are divided into macroblocks and a QP is specified for each
macroblock. A lower QP results in higher quality at the ex-
pense of more bits. To apply our algorithm to the H.263 coder,
we need to implement a block-level bit allocation algorithm
that allows coding frames to precise rate and distortion targets,
in an R-D optimal or near-optimal fashion. The problem has
been well-studied in the literature (e.g., [7], [24]), mainly for
the MPEG-2 coder [25]. Most use either the Lagrange multi-
plier method [7], [26], dynamic programming [24], or gradient
descent [12]. However, all of those assume that macroblocks
are coded independently of each other. While this holds for
MPEG-2, it does not for H.263, where the QPs of consecutive
macroblocks may not differ by more than 2.

This dependency led us to cast the block-level bit allocation
problem as a variation on the multiple choice knapsack problem
(MCKS) (see e.g., [27]), which takes into account the limit on
QP variation [5]. We then solved the problem using dynamic
programming. For H.264, the QPs can be unrestricted, so we
can use a more efficient dynamic programming setup to achieve
good rate distortion with constant quality.

The current research implementation of H.264 used in the JM
reference software includes a rate-control algorithm that also

Fig. 2. Our version of the MultiStage algorithm. The parameters are B: total
bit budget, �: target PSNR range, and �: target rate range.

performs R-D optimization. The algorithm is optimized for av-
erage distortion and uses a second-order rate-distortion model
[28], [29]. A pre- and post-encoding stage are necessary to en-
sure bit targets are met. In Section IV-C, we use JM 10.2 as a
benchmark to compare against MultiStage.

III. MULTISTAGE ALGORITHM

The MultiStage algorithm [30], [31] is so named because it al-
ternates between two distinct stages—the constant quality stage
and the target rate stage. In the constant quality stage, all frames
are coded to the same distortion. In the target rate stage, the se-
quence is coded to the exact total bit budget. There are two pos-
sible termination conditions: either the distortion after the rate
stage is close to constant or the rate after the distortion stage is
close to the target rate. The algorithm, slightly modified from
the one presented in [30], is shown in Fig. 2.

The target for each constant quality stage is the average PSNR
from the previous target rate stage. Let be the rate achieved
for frame in the last constant quality stage, and
the total rate. If is the total target rate, then the target rate
stage assigns to the th frame bits (which would work
perfectly if R-D curves were linear). Note that if MultiStage
terminates at step 3c, the result is a constant-quality encoding.
Otherwise, the rate target will be met precisely but there will be
a slight variation in the quality.

Although originally designed for embedded coders, the only
explicit requirement MultiStage has from the underlying coder
is that it allow coding a frame to precisely the required rate or
distortion. In fact, almost any coder can do that, including H.263
and the new H.264 standard [32]–[34] with the help of an ap-
propriate single-frame bit allocation scheme.

This algorithm is not optimized for speed; indeed, since Mul-
tiStage consists of multiple passes of compression, it will always
be slower than one pass methods. As noted in the Introduction,
there are many offline applications that require excellent quality
and do not need efficient encoding time.

A. Buffer Control

Note that if we are in a situation where buffer underflow is a
concern, the MultiStage algorithm does not guarantee that the
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buffer underflow avoidance constraint will be satisfied. Recall
from Section II-A that we assume the buffer is initially pre-
loaded by delaying playback by some delay . The initial buffer
occupancy will then be , where is the rate of the
channel. The buffer occupancy after frame is given by (1).
Buffer underflow occurs when after some frame .

Our buffer control modification is based on the observation
that a buffer underflow of bits at frame (i.e., ) can
be fixed by removing a total of bits from some combination
of the previous and current frames through . Our modifi-
cation divides the bits which must be removed between the
frames in proportion to their original allocations. In other words,
if then our new allocations are

We then add the removed bits to the frames after , once again
in proportion to their original allocations. Our new allocations
for frames through are

B. Applying MultiStage to Video Coders

We first apply MultiStage to an embedded video coder, GTV.
Embedded video coders allow the bit allocation algorithm to
specify an exact size for each frame. Thus, the implementation
of MultiStage is straightforward.

It is more challenging to apply MultiStage to the quantiza-
tion-based coders, especially H.263. While many authors have
addressed block-level bit allocation, most have worked with
MPEG-1/2 coders. While H.263 is very similar to MPEG-2 in
the way frames are coded, there are a few differences that affect
the way bit allocation works. One such difference is the way
H.263 codes QPs.

Unlike MPEG-2, H.263 uses differential coding for QPs. The
QP of the first macroblock is coded first as a full 5-bit value,
but later QPs are coded by their difference (delta) from the
previous block (in raster order). Furthermore, the magnitude
of this difference (called DQUANT) may not exceed 2 (i.e.,

), and it is somewhat cheaper (by 2 bits) to code
a DQUANT of zero than nonzero.

Unfortunately, this renders most bit allocation algorithms in
the literature inaccurate, since they assume that QPs may be
picked in any combination. This includes the Shoham–Gersho
method [7] and its model-based derivatives, as well as gradient-
descent. The method of Wiegand et al. [24] can handle this con-
straint, but they chose not to implement this. Ribas–Corbera and
Lei [26] choose a QP for each block in raster order, and then
force it into the valid range. Their method is now implemented
as TMN8 in the H.263 standard.

We based our solution on a different approach. As Mohr ob-
served in [5], block-level bit allocation can be viewed as an in-
stance of the MCKS. This is a well-known generalization of the
classic knapsack problem (see e.g., [27] ch. 11): given boxes,
each containing items, each with integer value and cost, and

an integer , pick exactly one item from each box to maximize
total value, while keeping total cost under .

If blocks are coded independently, there is an obvious map-
ping from bit allocation to MCKS: each macroblock is a box,
and each QP setting is an item, whose cost is the bit-rate and
whose value is the negated distortion, measured as the total
squared error. The cost limit is set to the total bit budget. An
optimal choice of items will correspond to an optimal choice
of QPs. The problem can be solved using dynamic program-
ming. We define to be the optimal value achievable using
boxes with total cost exactly . That yields the following
recurrence:

(2)

where and are the value and cost of item in box ,
respectively. The global optimal solution will have value

. Once we know , we can trace back in the
usual way to reconstruct the optimal set of choices. The time
complexity for this algorithm is .

Of course, in the case of H.263, we must find a way to pre-
serve the DQUANT constraint. We begin by adding that con-
straint to MCKS, in the form of an additional parameter ,
which is the maximum difference between choices from con-
secutive boxes; we call this new problem -constrained MCKS.
To solve it, we need to modify our goal function somewhat. We
now define to be the optimal value achievable using
boxes , with total cost , and choosing item from box
. This yields the following recurrence:

(3)

The value of DQUANT is represented by . This recurrence can
be computed for all pertinent values in time , and
the solution reconstructed, once again, by tracing back through
the computed table. In our case, of course, .

Finally, to reduce the complexity, we introduced a simple
heuristic. In practice, the different QPs in a single frame tend
to be close—within a range of 6–8 values. Taking advantage
of this, we restricted the QP search to a narrow range. Given
a target rate , let be the highest QP for which coding all
blocks to will achieve rate higher than , and let

. We find and by search, and then restrict the search
to the range , where is a user-specified pa-
rameter. If that range exceeds the range of valid QPs, we use the
appropriate (highest or lowest) -value range containing
and . We did not apply this restriction to the initial I-frame,
where QPs tend to vary more.

Typically, consecutive frames will have similar R-D charac-
teristics, and so we start our search for with the value found in
the previous frame. In our experiments, only rarely (as in scene
changes) did the value change by more than 3. The heuristic
then gains on two fronts: first, by not having to generate the
entire R-D curves of every block; and second, by reducing the
size of the -constrained MCKS problem that has to be solved.
Our experiments show that for a range of 8 QPs, the sacrifice
in optimality was negligible (usually 0, and never more than
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Fig. 3. Comparison of the MultiStage, Constant Rate, and Yang–Hemami algorithms for the videos Trevor and News, using the embedded coder. (a) Trevor.
(b) News.

0.1 dB), and the speedup gain was more than 3-fold compared
to the full-range optimal solution.

With the emergence of the new H.264 standard [35], it is nat-
ural to study how MultiStage may be applied to it. H.264 does
not have the same DQUANT requirement as H.263, so we are
free to simply run an unconstrained version of the block-level
bit allocation. Thus, our dynamic program is given by (2). The
values returned by the dynamic program will be the optimal QPs
for each macroblock in the frame. However, the original reason
for the DQUANT constraint was to save bits in the header of
the frame. We implemented both the -constrained version of
the dynamic program (3) with and the simpler uncon-
strained version, and found that they produced essentially the
same PSNR given the bit rate, with the average slightly higher
in the -constrained version. Thus, it appears that constraining
the change in QPs between macroblocks in H.264 does not sig-
nificantly improve PSNR.

Note that the JM implementation of H.264 has its own rate
control algorithm that allows for R-D optimization. However, it
is somewhat strict in that it does not allow the bit rate to vary
much between frames. As the next section shows, we perform
much better than JM under the MINMAX criterion, while still
maintaining a constant bit rate.

IV. RESULTS

In this section, we present our results for MultiStage on the
embedded coder, GTV, H.263, and H.264. We note that Multi-
Stage is a multiple pass algorithm and as such is much slower
than one pass methods. This is not a concern of ours, because
MultiStage is designed for offline applications where quality is
much more important than speed. MultiStage usually converges
in 3–5 iterations.

A. MultiStage With an Embedded Coder

For the embedded coder, all tests had a channel rate of
100 kbps and a frame rate of 30 fps. We used the GTV coder
[4] and two QCIF (176 144) videos, News, and Trevor. The
News video contains three scene changes which only impact a
portion of the frame. The Trevor video contains a single scene
change which affects the entire frame.

In Fig. 3 we compare the results of running the MultiStage
algorithm with the results of Yang and Hemami’s algorithm and

Fig. 4. Effect of adding buffer control to the MultiStage algorithm on Trevor.

TABLE I
MINIMUM PSNR, AVERAGE PSNR, PSNR VARIANCE, AND DELAY, FOR

THREE EMBEDDED CODER METHODS AT 100 kbps

constant rate allocation. We chose a GOP size of 30 frames for
Yang and Hemami’s algorithm, as in [2]. In both experiments,
the MultiStage algorithm results in the most consistent PSNR
and the highest minimum PSNR. The MultiStage algorithm also
avoids the PSNR dips at the scene changes.

In Fig. 4 we show the results of adding buffer control to the
MultiStage algorithm. We did not see buffer underflow for every
video, so we only examine Trevor, which experienced buffer
underflow with the MultiStage algorithm. We assumed a one
second (30 frame) delay. We see that the effects of buffer con-
trol were negligible in the Trevor video. The quality prior to the
frame where underflow occurs without buffer control is slightly
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Fig. 5. Comparison of frame-by-frame PSNR between fixed QP, MultiStage, and TMN8, for Trevor at bit rates 25 kbps and 100 kbps. (a) 25 kbps. (b) 100 kbps.

Fig. 6. Comparison of frame-by-frame PSNR between fixed QP, MultiStage, and TMN8, for News at bit rates 25 kbps and 100 kbps. (a) 25 kbps. (b) 100 kbps.

degraded and the quality after that frame is slightly improved.
These differences, however, are small. In some of the other ex-
periments we ran (described in [36]), though, buffer control had
a more significant impact. This occurred in videos whose first
scene was significantly more difficult to code than the rest of
the scenes. This is the worst case scenario because a dispropor-
tionate number of the bits must be allocated to the beginning of
the video in order to achieve consistent quality. Stacking the bits
at the beginning of the video leads to a large, early underflow be-
cause the buffer is quickly depleted before it has a chance to fill
up.

Table I summarizes our results. MultiStage has the highest
minimum PSNR and the lowest PSNR variance of the three
methods, at a cost of some delay. For the Yang–Hemami
method, one GOP (1 s in our experiments) is always sufficient.

B. MultiStage in H.263

Measuring the success of our block-level allocation algorithm
against H.263 is challenging. On the one hand, the default H.263
block-level bit allocation is very unreliable and can miss the
target by a large margin. On the other hand, most algorithms
published in the literature do not maintain the DQUANT con-
straint, and hence are not comparable to ours. We therefore com-
pare our algorithm to the fixed-QP allocation, where all mac-
roblocks are quantized with the same QP.

We compared the performance of MultiStage against the
default TMN8 rate control algorithm (based on [26]) imple-
mented in the Telenor H.263 coder [37], and against fixed-QP

coding. (The online TMN5 algorithm implemented in the coder
is not comparable, since it attempts to maintain strict buffer
constraints, which our algorithm does not.) We choose a target
rate and code with MultiStage and TMN8 to that target. The
block-level MCKS optimizer was set to use an 8-QP range. In
order to hit the target with fixed QP, we code the video at a
fixed QP over the entire range of possible QPs. We then pick
the QP that is closest to our target rate.

Figs. 5 and 6 compares frame-by-frame PSNR for Multi-
Stage, TMN8, and fixed QP. Results on more sequences and
bit rates can be found in [31]. Clearly, MultiStage achieves very
high stability, typically coding all frames to within 0.3–0.4 dB
of each other, while the sequences coded with TMN8 exhibit
very wide fluctuations. Coding with a fixed QP works very well
within a scene, but different scenes can have very different R-D
characteristics, as can be seen in the Trevor graphs (Fig. 5)
around frame 50. Since MultiStage is a global algorithm, it can
equalize the quality of the two scenes.

C. MultiStage in H.264

We measure the success of MultiStage against the default rate
control included in the JM 10.2 implementation of H.264, and
against a fixed QP version. We use the -constrained version of
MultiStage, since it gives a slight advantage in PSNR.

Fig. 7 compares frame-by-frame PSNR for MultiStage, JM
10.2, and fixed QP on 5 s of the video sequence Trevor. Two
different bit rates are shown. Again, MultiStage achieves very
high stability, typically coding all frames to within 0.1 dB of
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Fig. 7. Comparison of frame-by-frame PSNR between MultiStage, fixed QP, and JM 10.2, for the sequence Trevor at bit rates 25 kbps and 100 kbps. (a) 25 kbps;
(b) 100 kbps.

Fig. 8. Comparison of frame-by-frame PSNR between MultiStage, fixed QP, and JM 10.2, for the sequence News at bit rates 25 kbps and 100 kbps. (a) 25 kbps.
(b) 100 kbps.

TABLE II
VIDEO SEQUENCE AKIYO, 10 S, AT FOUR DIFFERENT BIT RATES

each other, while the sequences coded with JM 10.2 vary widely.
Fixed QP achieves similar results to those for H.263. Fig. 8
shows the results for 10 s of the video sequence News. The per-
formance of MultiStage is even more striking on this sequence;
the curve for quality at 100 kbps is almost a straight line. Fixed
QP also shows a very flat curve, but the average PSNR is lower,
because this method cannot hit the target rate precisely and thus
wastes some bits.

Tables II–V give more information about the performance of
MultiStage. MultiStage is compared with JM 10.2 and fixed
QP on four different video sequences at four different rates.
One advantage of the embedded coders over the quantization-

TABLE III
VIDEO SEQUENCE FOREMAN, 10 S, AT FOUR DIFFERENT BIT RATES

based coders is the ability to precisely control rate. Applying
MultiStage to H.264 results in higher error rates than with the
embedded coder, particularly at low bit rates. Compared with
JM 10.2 and fixed QP, the minimum PSNR is always highest
with MultiStage and the variance is almost always lowest. Note
also that the average PSNR is comparable with JM 10.2. The
delay, calculated according to the method in Section III-A, is
lowest with JM 10.2. This is because JM 10.2 devotes less total
bits in the beginning of the sequence than either of the other
methods (so it may be flexible later on). The effect is most
striking in Foreman, which has the most variance overall due
to scene changes.
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TABLE IV
VIDEO SEQUENCE NEWS, 10 S, AT FOUR DIFFERENT BIT RATES

TABLE V
VIDEO SEQUENCE TREVOR, 5 S, AT FOUR DIFFERENT BIT RATES

V. CONCLUSIONS AND FUTURE WORK

As our results demonstrate, the MultiStage algorithm is an
effective approach for near-constant-quality coding of quanti-
zation-based video. Clearly, it can be applied only for offline
applications (e.g., DVD coding). On the other hand, it achieves
global stability with time complexity essentially linear in the se-
quence length. The only other algorithm we know of that does
that is Schuster et al.’s bisection method from [11], but Mul-
tiStage seems to converge faster, especially at medium to high
rates.

We have also introduced a novel approach for optimal block-
level rate allocation for H.263, which maintains the DQUANT
constraint. Our solution, based on a dynamic programming so-
lution to a modified multiple-choice knapsack problem, is guar-
anteed to be optimal, as long as the rate and distortion of each
block depend only on its QP. Our algorithm does not rely on
the quantizers being convex or even monotonic (and, in fact, in
H.263 they are not always so).

There are many interesting directions for possible future work
on the algorithms presented here. Some of the more important
ones include the following.

Buffer management: The current work does not address
the issue of channel bandwidth and buffer constraints. It
is not clear how to interpret the MINMAX criterion in the
presence of such constraints. Lee and Ortega claim in [16],
that once buffer constraints become tight for some portion
of the sequence coded to MINMAX distortion, the question
becomes how to allocate bits to the rest of the sequence.
However, this is not always the case; a constant-quality

allocation of bits for the tight portion might not be optimal
globally.
Block mode selection: H.263 allows macroblocks in
P-frames to be coded either in either P (predicted) or I
(intra) mode. In our implementation we forced all blocks
to be encoded as P blocks, which is suboptimal. Wiegand
et al. showed in [24] how mode selection can be per-
formed, and it seems that the MCKS framework should be
able to support that task.
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