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Abstract

The DNA in our cells contains our genetic hereditary information, and is literally

the blueprint of our body. The functional units of the genome are regions of

continuous DNA sequence, and are called genes. According to the Central Dogma

of Biology, the DNA sequence of the gene is transcribed into a messenger RNA

(mRNA), which is in turn translated to proteins, which perform most tasks in

the cell.

All the cells in an organism share the same DNA, but there are dramatic mor-

phological and functional di↵erences between cells in various tissues and under

di↵erent conditions. Many of these di↵erences are mediated by regulation that

determines which genes are “turned on”.

Classically, regions in the DNA were considered as genes only if they encode

proteins. Today, regions in the DNA that are transcribed to mRNA but do not

encode proteins, and function at the RNA level are also considered genes, and are

called non-coding RNAs. Antisense transcripts are a specific type of non-coding

RNAs, that overlap a protein-coding gene on the opposite DNA strand. In this

context, these are called the antisense and sense transcript, respectively. When

the antisense gene is transcribed, it can down-regulate the expression of the sense

gene.

One of the first steps in understanding a newly sequenced organism is to

annotate its genes, which will enable us to predict its repertoire of proteins.

Ultimately we would like to annotate the genes, find their genomic position, and

understand when, why and how they are turned on and o↵. The simplest task is

to first identify their genomic position. In some simple eukaryote organisms (like

the budding yeast), the genome is very dense with genes, and the vast majority

of them are not spliced. In mammals, however, the genes comprise an extremely

small part of the genomic sequence. For example, in humans only 2% of the

genomic sequence is protein coding, making the task of finding the genes in the

sea of the genomic sequence far from trivial. Thus, sequencing the genome is
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only the first step in our journey, and additional steps are required for better

understanding an organism. One approach to characterize all transcribed genes

is to examine the collection of mRNA molecules in the cell (also known as the

cell’s transcriptome).

Experimentally defining the complete transcriptome of eukaryotic organisms

has traditionally been a challenging task, most commonly using tiling microarrays

or sequencing Expressed Sequenced Tags (ESTs). In recent years new sequencing

technologies (“next generation sequencing” or “high-throughput sequencing”) have

emerged. These technologies allow us to take a single sample and sequence tens

of millions of short reads, at unprecedented high speed and low cost. These tech-

nologies open up intriguing possibilities in studying other aspects of the genome,

like sequencing the entire transcriptome (an assay called RNA-Seq). Most stud-

ies have used RNA-Seq to quantify the expression levels of known genes, identify

splice isoforms and refine gene boundaries. However, many studies depend on

an existing annotation or sequenced genomes, limiting the ability of discovering

novel transcripts and studying diverse organisms.

In my dissertation I present a series of studies on the development of technolo-

gies and tools for RNA-Seq analysis and their application in organisms ranging

from yeast to mouse. I focus on di↵erent approaches I have developed for tran-

scriptome reconstruction, from mapping-first ones that rely only on an available

genome sequence, to Trinity, a method for de novo assembly of full-length tran-

scripts without requiring a sequenced genome. In addition, I describe systematic

approaches to assess the quality of RNA-Seq experiments for annotation and ex-

pression quantification, and how I use them in a comparative study on library

construction methods for strand specific RNA-Seq.

Finally, I show how these approaches scale to organisms from yeasts to ver-

tebrates, helping in genome annotation of newly discovered organisms from the

Schizosaccharomyces clade, the identification of extensive regulated long anti-

sense transcripts that are conserved across yeast species, transcriptome analysis

in the Bemisia tabaci whitefly, for which the genome sequence is not available,

and for the discovery of alternatively spliced isoform in mouse.
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Chapter 1

Introduction

1.1 Central Dogma of Biology

The DNA in our cells contains our genetic hereditary information, and is literally

the blueprint of our body. The DNA is a polymer of four types of nucleotides:

adenine, cytosine, guanine and thymine (marked briefly “A”,“C”,“G” and “T”

respectively). The functional units of the genome are regions of continuous DNA

sequence, and are called genes. According to the Central Dogma of Biology, the

DNA sequence of the gene is transcribed into a messenger RNA (mRNA), which

is in turn translated to proteins. The DNA has two strands, of complementary

sequence, and the location of each gene in the genome includes both its strand

and its position in the genome. This will determine the sequence that encodes the

protein. The proteins perform most tasks in the cell. For example, they detect

extra-cellular signals, replicate the DNA in preparation for cell division, regulate

which genes will be “turned on”, transcribe the genes, and so on.

All the cells in an organism share the same DNA, but there are dramatic mor-

phological and functional di↵erences between cells in various tissues and under

di↵erent conditions. Many of these di↵erences are mediated by regulation that

determines which genes are “turned on”.

The DNA region of a gene has a few defined characteristics, and can be divided

into several segments (Fig. 1.1). The region that encodes the protein is called

the Open Reading Frame (or ORF) of the gene. During translation, each DNA

triplet (a codon) is translated into one amino acid. The sequence of amino acids

makes a protein. Although the gene is a consecutive region on the genome, there

are regions in it that following transcription are cleaved out, and are not part

of the ORF. This process is called splicing, the regions that are spliced out are

1



3’ UTRPromoter

Gene

Transcription
initiation

DNA

pre-RNA

mRNA

Protein

     Nucleus   Cytoplasm

Transcription

Splicing

Translation

5’ UTR

Exon ExonIntron Intron Exon 3’ UTR5’ UTR

Exon ExonIntron Intron Exon

Figure 1.1: The Central Dogma of Biology and the gene structure. Ac-
cording to the Central Dogma of Biology, the DNA sequence of a gene is first
transcribed to mRNA, then translated into a protein. In eukaryotes it is ex-
ported out of the nucleus after transcription and translated into a protein. The
gene is comprised of several segments. The promoter (light blue) is the regu-
latory sequence to which transcription factors, and the RNA PolII bind. The
Open Reading Frame is divided between a few exons (here in orange, yellow and
green), interleaved by introns (light gray) which are spliced out. Flanking the
ORF there are untranslated regions (UTRs, dark gray), which are transcribed to
mRNA and exit the nucleus, but are not translated.

2



Exon ExonIntron ExonIntronIntron DNA

pre-RNA

mRNA

Proteins

     Nucleus   Cytoplasm

Transcription

Alternative
Splicing

Translation

Exon

Exon ExonIntron ExonIntronIntron Exon

Figure 1.2: Alternative splicing. A single gene can give rise to several proteins
using the alternative splicing process. This is done by choosing which exons (here
in orange, yellow, green and blue) will be part of the final mRNA sequence, thus
translated. Here I show three protein variants from a single gene with four exons.

called introns, and the regions that remain and will be a part of the ORF are

called exons. The process of choosing which gene segments will be spliced out,

thus which will compose the ORF, enables several proteins to be encoded in a

single gene. This process is called alternative splicing, and each such alternative

transcript is called a splicing isoform (Fig. 1.2).

In addition to the ORF, the transcribed region of the gene also contains

additional flanking sequences, which are not translated, but carry some regulatory

information. These regions are called the Un-Translated Regions of the gene, or

the UTRs (Fig. 1.1).

1.2 Transcription Regulation & DNA Packing

The process of expressing a gene to its protein product is regulated at many

points, including how accessible is the gene for transcription, the rate of tran-

scription, mRNA degradation rate, initiation of translation, translation rate,

post-translation modifications, etc. Keeping this complex picture in mind, tran-

scription initiation plays a major role in the regulation of gene expression. For
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this to occur, a complex of proteins, known as the RNA polymerase II, has to

bind to the transcription initiation site of the gene, and then to change to the

right conformation to initiate the transcription. These steps are regulated by

several processes.

Transcription factors are typically DNA-binding proteins that recognize spe-

cific sites in the DNA sequence (usually based on specific words that occur there).

These factors either serve to recruit the RNA polymerase complex to the gene,

inhibit such recruitment, or a↵ect the rate by which the bound complex initiates

transcription. Transcription factors are essential elements in modulating the ex-

pression of genes. Changes in the protein levels of transcription factor, or their

state (i.e., post-translation modifications) can lead to changes in the expression

of their target genes.

DNA Packing

The chromosomal DNA molecule of eukaryotic organisms is organized at several

structural (3D) scales (Fig. 1.3). At the primary structure, chromosomal DNA is

packed around nucleosomes, protein complexes that serve as beads around which

the DNA is wrapped. A prototypical nucleosome is a complex of eight histone

proteins, containing two copies of histones H2A, H2B, H3, and H4. About 147bp

of DNA are wrapped around a single nucleosome forming slightly less than 2 turns

(Luger et al., 1997). The position of the nucleosomes can serve a regulatory role

by influencing the accessibility and hence activity of other proteins, most no-

tably transcription factors and the transcription machinery (Ehrenhofer-Murray,

2004). Nucleosome positions can thus have a critical impact on transcriptional

regulation and gene expression. Extensive recent work showed that nucleosome

locations are determined by combination of several forces. First, certain DNA

sub-sequence are preferable for wrapping around nucleosomes while others are

rigid and exclude nucleosomes (Lowary and Widom, 1998; Anderson and Widom,

2001; Segal et al., 2006; Field et al., 2008; Mavrich et al., 2008). These constraints

combined with the minimal distance between adjacent nucleosomes determine

much of the nucleosome organization. Second, there are chromatin remodeling

proteins that actively move nucleosomes to less preferable locations or evict them

(Rando and Ahmad, 2007; Whitehouse et al., 2007). Finally, other proteins, such

as transcription factors, compete with nucleosomes on the binding in particular

sites.

4



AA

AA

AA

CC

CC

CC

GG

GGGG

TT

TTTT

Chromosome

Nucleus

Telomere

ChromatidChromatid

Telomere

Centromere

Cell

Histones

Nucleosomes

DNA

(double helix)

Nucleotides

Figure 1.3: The DNA sequence and Chromosomal packing. Adapted from
the National Human Genome Research Institute. The DNA sequence comprises
of four nucleotides (adenine, cytosine, guanine and thymine), and has the 3-
dimensional structure of a double helix. At the basic level, the DNA is packed
around nucleosomes, which are histone protein complexes. The structure of the
DNA wrapped around the nucleosomes is then further compacted and condensed
to fit the small volume of the cell’s nucleus.

5



1.3 Coding and non-coding genes

Classically, regions in the DNA were considered as genes only if they encode

proteins. Until the early 80s there were two main additional classes of genes,

that do not encode proteins and are functional at the RNA level. These are

the transfer RNA (tRNA) and ribosomal RNA (rRNA) genes, involved in the

translation process. In the recent decade there has been a tremendous increase

in the discovery of functional RNA molecules, which are called in general non-

coding RNAs, as they do not encode proteins (Bertone et al., 2004; Carninci

et al., 2005; Rinn et al., 2007; Guttman et al., 2009). These RNA molecules

can function through a variety of mechanisms, and can be folded into a three

dimensional structure, which facilitates their function, and also increases their

stability. For example, tRNAs carry amino acids to their corresponding codons

in the mRNA. Each tRNA molecule folds into a structure that binds the codon on

one side, and the relevant amino acid on the other. Some non-coding RNAs act

as sca↵olds to recruit the assembly of proteins, like the TERC RNA that serves

as the template for the telomerase complex (Zappulla and Cech, 2006). Others,

like the miRNA class, form a RNA-RNA double strand by hybridizing to their

target mRNA (He and Hannon, 2004). This is one way to post-transcriptionally

regulate the activity of a gene, as this can either (a) result in the degradation of

these RNA molecules; or (b) prevent the mRNA from being translated.

Antisense transcripts are a specific type of non-coding RNAs. As explained

above, the DNA has two strands, and each gene is located on a specific strand

of the sequence. In some cases, we can find a non-coding gene that overlaps a

protein-coding gene, only on the opposite strand. In this context, these are called

the antisense and sense transcript, respectively. When the antisense gene is tran-

scribed, it can down-regulate the expression of the sense gene. There are a few

mechanisms suggested for this down-regulation (Faghihi and Wahlestedt, 2009):

(1) through the formation of a RNA-RNA double strand, as explained above

(Fig. 1.4); (2) the machinery that transcribes the antisense genes physically in-

terferes with the sense transcription machinery and prevents it from transcribing

the sense gene, hence less mRNA of the sense gene is available for translation;

and (3) transcription of the antisense gene leaves histone marks on the chromatin

that repress the transcription of the sense gene.
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Figure 1.4: Antisense transcription. Adapted from Robinson (2004). The
Central Dogma of Biology is presented for the sense gene as it is transcribed to
mRNA (blue) and then translated to protein (purple). The antisense RNA (red)
can form a RNA-RNA double strand, and prevent the sense gene from being
translated. Other forms of down-regulation include increased mRNA degrada-
tion, and transcription interference of the sense gene.

1.4 Gene Discovery

One of the first steps in understanding a newly sequenced organism is to annotate

its genes, which will enable us to predict its repertoire of proteins. By comparing

the predicted proteins to all known proteins, we can better understand how this

organism lives, regulates its behavior, and copes with di↵erent stress conditions.

This comparison can also teach us which components are unique to this organism,

and can shed some light on di↵erent mechanisms that have not been modeled

before.

Ultimately we would like to annotate the genes, find their genomic position,

and understand when, why and how they are turned on and o↵. The simplest task

is to first identify their genomic position. In some simple eukaryote organisms

(like the budding yeast), the genome is very dense with genes, and the vast

majority of them are not spliced. In mammals, however, the genes comprise an

extremely small part of the genomic sequence. For example, in humans only 2%

of the genomic sequence is protein coding, making the task of finding the genes

in the sea of the genomic sequence far from trivial. Thus, sequencing the genome

is only the first step in our journey, and additional steps are required for better

7



understanding an organism.

Although genomes and the genes they contain di↵er greatly between di↵erent

organisms, some common rules are universal (except for few special organisms).

All open reading frames share some characteristics that can help us locate them.

There are special codons to specify the beginning and end of the proteins, these

are called the start- and stop- codons, respectively. There are computational

approaches that use this knowledge of the special codons, and other properties

of codons (like conservation) to discover the genes, given the genomic sequences

(Stanke and Waack, 2003; Majoros et al., 2004).

Even if we have a good computational tool for identifying the ORFs, there are

still caveats to this approach: (1) low specificity, since it finds many sequences

that have the start and stop codons but are not transcribed (spurious ORFs), at

least in the examined conditions; (2) the sensitivity of finding single exon genes

is fair, but it decreases dramatically at the multi exon genes; (3) this approach

will fail to identify non-coding genes, as it searches for ORFs; (4) it finds only

the ORF and not the entire gene sequence that includes the UTRs; and (5) we

need to have the reference genome sequence of our model organism to perform

this search.

A di↵erent approach is to examine the collection of mRNA molecules in the

cell (also known as the cell’s transcriptome). Most commonly this is done by either

tiling microarrays or sequencing the transcriptome, and in both cases the RNA

sequences are first transformed to their complementary DNA sequence (cDNA).

Microarrays

Building on existing reference sequence and properties of hybridization (the pro-

cess by which one-stranded DNA molecules bind to the complementary sequence)

allowed the design of DNA microarrays to detect the presence and quantity of

specific mRNA sequences (Bertone et al., 2004; David et al., 2006). Each sequence

on the array is called a probe, and we can design the array to hold overlapping

probes for the genomic region of interest at a given resolution. The cDNA se-

quences are then hybridized with the array. Probes of the array that complement

the sequences in the cDNA will by hybridized and identified. The major caveat

of this technology is that we still rely on having a sequenced reference genome.

We need to know the sequences of the regions we are interested in for designing

the array.
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Transcriptome Sequencing

In the sequencing approach we harness existing DNA sequencing technologies

to sequence the cDNA library. In a pioneering work in the early 90s, Craig

Venter and colleagues describe how they sequence parts of a human cDNA library

(Adams et al., 1991). These sequence parts are called Expressed Sequence Tags

(ESTs).

Although only parts of the cDNA are sequenced, with su�cient amount of

ESTs and a reference sequence of minimal quality, we can annotate the coding

regions of a genome. However, sequencing ESTs is a very long and laborious

process. Each cDNA part is inserted into a bacterial clone, and each clone is

grown to a colony, so we have an amplified and homogenous population. Finally,

each colony is sequenced using primers for the known flanking sequences of the

bacterial clone, generating sequences in the range of a few hundred basepairs.

1.5 Next Generation Sequencing

In recent years new sequencing technologies (“next generation sequencing” or

“high-throughput sequencing”) have emerged. These technologies allow us to take

a single sample (small amount of liquid with DNA fragments) and sequence tens

of millions of short reads, at unprecedented high speed and low cost. Depend-

ing on the particular technology, these reads represent 30-300bp o↵ the end of

the fragment or o↵ the two ends of the fragment (paired-end sequencing). The

main breakthrough in this technology is that the amplification and sequencing

is done in parallel for all fragments. The double stranded DNA sample is first

fragmented into ⇠300bp long pieces, and then these pieces are spread on a glass

surface. The amplification is performed while the fragments are connected to

the glass, and generates many copies of the same fragment, in close proximity

to the location of the original fragment (these are referred to as clusters). The

clusters are homogenous, as they contain many copies of the same fragment, and

if they are distinct enough, the sequencing machine can sequence all the clusters

simultaneously.

In this dissertation I focus on the Illumina (Solexa) platform that currently

provides sequenced reads of length 32-150bp. The most common application of

Illumina sequencing is to derive a host of sequenced reads from a DNA sample of

interest, identify them by mapping to a finished reference genome, and deriving
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biological insight relevant to the measured sample. For example, by re-sequencing

the DNA of specific individuals we can find the di↵erences from the reference

genome (Nielsen et al., 2011). Moreover, they open up intriguing possibilities

in studies of other aspects of the genome. For example, as we are interested

in characterizing the transcriptome we can sequence the cDNA library, which

represents all the mRNA molecules present at our sample. This assay is called

RNA-Seq, and can be used not only to characterize the transcripts, but also to

quantify the expression levels of all genes and their di↵erent splicing isoforms

(Fig. 1.2).

There are two major approaches in analyzing high throughput sequencing

data: (1) mapping-first and (2) assembly-first (Fig. 1.5).

Mapping-first approach

In the mapping-first approaches, we rely on having a sequenced reference genome

at some minimal quality. The first step is to find the genomic location that each

read originated from. This is done by mapping the read sequences to the given

genomic reference, and can be performed by a variety of aligner methods (Kent,

2002; Langmead et al., 2009; Li and Durbin, 2009). The second step is to generate

coverage plots, that represent how many reads originated from each position in

the genome. Finally, we can examine these coverage plots to identify patterns

associated with transcribed regions (Fig. 1.5).

Assembly-first approach

Assembly-first approaches do not rely on a sequenced reference genome. Instead,

they start by assembling all sequenced reads. After we have assembled the reads,

if we do have a sequenced reference genome, we can map the assembled sequences

to it. We can then examine the sequences assembled by predicting their protein

sequences, and comparing to known genes.

DNA Assembly

There is a long history of DNA assembly methods, as part of the e↵ort to sequence

many genomes (Zerbino and Birney, 2008; Gnerre et al., 2010; Li et al., 2010).

All these methods build on the initial concept of using de-Bruijn graphs for DNA

assembly originally suggested by Pavel Pevzner (Pevzner, 1989). There are two

main challenges in this field: (1) how to generate the enormous de-Bruijn graphs
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that represent our data; and (2) once the graphs are built, how to extract a

single coherent long DNA sequence. The first challenge is usually solved by using

extremely high memory computers (e.g. with 512GB memory), which allows only

established institutes designated for this task to perform such assemblies. To

address the second challenge, there are many methods that traverse the graphs,

and output their most probable sequence (Zerbino and Birney, 2008; Gnerre et al.,

2010; Li et al., 2010).

RNA assembly

The task of assembling RNA-Seq reads shares these challenges, but adds on new

challenges. As we have tens of millions of reads, the challenge of generating the

graphs also exists in RNA-Seq assembly methods, and can be relaxed by using

heuristic approaches. The underlying assumption in RNA-Seq assembly is that

ideally, each gene or gene family should assemble separately. This implies there

is no single enormous graph, and the challenge is to accomplish this, even if we

do not know a priori which read originated from which transcript. One way to do

this is to first use a greedy method for the crude assembly of the reads to linear

sequences, and then combine these sequences based on their similarity (Grabherr

et al., 2011). Another approach, in the case we have a sequenced reference, is to

first map the reads to the genome and then assemble them based on this mapping

(Trapnell et al., 2010; Guttman et al., 2010).

Finally, assembling RNA-Seq reads is di↵erent from assembling DNA-Seq

reads, for additional two reasons: (1) We do not expect uniform coverage of

the genome, as we have about four orders of magnitude di↵erence in the expres-

sion levels of genes; and (2) In DNA assembly we expect to have a linear assembly

graph (except for repetitions). In RNA assembly, the di↵erent isoforms will gen-

erate non-linearity in the assembly graph, and unlike in the DNA case, there is

no single right answer, as we would like to capture all possible transcripts.

There is a tradeo↵ in choosing between the mapping-first and the assembly-

first approaches, as each approach has its pros and cons (Haas and Zody, 2010).

First and foremost, mapping-first methods require a sequenced reference genome.

In addition, mapping-first approaches heavily rely on the software for mapping

the short reads to the genome. There are a few challenges in aligning the reads

to the genome, including handling tens of millions of reads, taking into account

that some reads might originate from a few genomic loci, and doing all this in

an e�cient manner. In addition, there can be discrepancies between the read-
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and the reference sequence. On the one hand, sequencing is known to introduce

errors (roughly, at a ⇠0.1%-1% rate depending on the technology), thus the

sequence outputted by the sequencing machine might not be accurate. On the

other hand, there is no true reference, as there is some level of diversity in our

sample and not all cells in our sample have the exact same reference sequence.

For example, there could be a single nucleotide polymorphism (SNP) in one of

the genes, and while the majority of our sample, and the reference sequence,

have a “T” in that position, a non-trivial portion of our sample has “C” there.

When we try to map a read with a “C” to this position, we would count this

position as a mismatch, while it could just belong to the second, less frequent

variant. Finally, mapping the reads that originate from the splicing junction (also

referred to as spliced reads) is di�cult, as we do not know the position within the

read where this splicing occurs. The way current aligners handle this problem is

by examining all reads that have not been mapped in full, and mapping pieces of

them in the hope to find that di↵erent pieces would map to the di↵erent exons.

The problem of mapping spliced reads has become more and more relevant, as

the reads are getting longer we observe reads that have up to 4 splice junctions

within their sequence. However, if we rely on currently known annotation, we

can align the RNA reads to all possible transcripts, thus overcome this problem

but introduce a new challenge of assigning each read to a single transcript. To

conclude, the mapping first approach relies on a high quality sequenced reference

genome, and performs well if we rely on known annotations or study a relatively

simple transcriptome (not too spliced).

On the other hand, although the assembly-first approach does not rely on a

sequenced reference genome, it has other caveats. The assembly process itself is

challenging, as we do not know a priori which reads originate from which tran-

scripts. Ideally, we would divide our read set into groups, each group corresponds

to a transcript, and assemble all reads within a group. Instead we have to as-

semble all the tens of millions of reads as a single group, and in theory each gene

(or gene family) could assemble separately. In addition, taking into account the

orders of magnitude di↵erence in transcript abundance and the sequencing errors

discussed above, we are faced with a new challenge. The erroneous versions of

some highly expressed genes are more abundant than the lowly expressed genes in

our sample. The assembly method should be able to tell these two cases apart, by

filtering all the sequencing errors, considering the abundance of their alternative

variants. An additional advantage of the assembly-first method, is that if we do
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have a reference genome sequenced, mapping the longer sequences is much easier,

and can overcome many splicing junctions. To conclude, the assembly-first ap-

proach is appropriate if the reference genome is fragmented, or not sequenced at

all. In addition, it has a great added value in studying complex, highly spliced,

transcriptomes, and in cases where we do not rely on current annotations. Such

ab-initio work is of great importance to the annotation of genomes for species

on which we know relatively little or where the genome has massive genomic

aberrations and rearrangements, as occurs in many tumor tissues.

1.6 Research Goals

The advent of high-throughput sequencing opens new opportunities to study tran-

scriptome profiling and gene expression in a genome-wide and unbiased manner.

Harnessing the full power of these technologies poses significant analytical chal-

lenges both in processing the raw data and its biological interpretation. My goal

is to develop methodologies to address this challenge and apply them to several

central problems in molecular biology. I have the following specific objectives:

Computational platform

Develop a computational framework for processing high-throughput sequencing

in both the mapping- and assembly-first approaches.

Library construction methods

Understand the di↵erences in the various RNA-Seq library construction methods,

and find the ideal protocol for each task (e.g., characterization vs. expression

measurements).

Transcriptome characterization

Develop methodology for processing sequencing results from RNA-Seq assays

to define the repertoire of transcripts, including their exact boundaries, strand

specificity, splicing isoforms, and abundance. My emphasis will be on ab initio

methodology that assumes we do not know the genes structure in advance.
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Defining the transcriptome, the repertoire of transcribed regions
encoded in the genome, is a challenging experimental task. Current
approaches, relying on sequencing of ESTs or cDNA libraries, are
expensive and labor-intensive. Here, we present a general approach
for ab initio discovery of the complete transcriptome of the budding
yeast, based only on the unannotated genome sequence and millions
of short reads from a single massively parallel sequencing run. Using
novel algorithms, we automatically construct a highly accurate tran-
script catalog. Our approach automatically and fully defines 86% of
the genes expressed under the given conditions, and discovers 160
previously undescribed transcription units of 250 bp or longer. It
correctly demarcates the 5! and 3! UTR boundaries of 86 and 77% of
expressed genes, respectively. The method further identifies 83% of
known splice junctions in expressed genes, and discovers 25 previ-
ously uncharacterized introns, including 2 cases of condition-depen-
dent intron retention. Our framework is applicable to poorly under-
stood organisms, and can lead to greater understanding of the
transcribed elements in an explored genome.

computational biology ! RNAseq ! next generation sequencing !
transcriptome profiling ! Saccharomyces cerevisiae

Experimentally defining the complete transcriptome of eukary-
otic organisms has traditionally been a challenging task, involv-

ing large, costly, and slow experimental efforts for sequencing of
ESTs and full-length cDNA libraries. Unlike the genome, RNA
transcripts are not present at equimolar concentrations, and are
typically expressed in a context-specific manner. Thus, despite the
fact that the genomes of !1,000 species have been sequenced, only
few transcriptomes have been extensively characterized.

Recent advances in massively parallel sequencing technology (1,
2) offer new and powerful approaches to the study of transcrip-
tomes. Recent studies (3–7) have shown that, by sequencing the
mRNA content of cells, one can quantify the expression levels of
known genes (by counting how often sequences from a given gene
are observed) and refine their boundaries. For example, Nagalak-
shmi et al. (3) studied the Saccharomyces cerevisiae transcriptome by
mapping reads to the location of known genes to quantify expres-
sion, and to known splice sites to measure their occurrence.
Similarly, Mortazavi et al. (5) studied the mouse transcriptome by
mapping reads to known exons and known splice junctions, as well
as to ‘‘putative’’ junctions between known exons. Thus, in both cases
(and in additional studies, see refs. 4–7) the analysis critically
depended on existing annotation.

A more challenging problem is to define a transcriptome ab
initio, based only on the unannotated genome sequence and
millions of short reads from cDNA samples. Rapid and efficient
methods to do so would transform our ability to define transcripts
and study transcription in any genome. This ability would be
particularly important in a new genome project involving phyloge-
netically isolated species and in cancer genome projects, where the
genome annotation may fail to reflect pathological aberrations. The

full goal would include: (i) identification of all regions encoding
transcripts (coding and noncoding RNAs) in a given condition or
cell type; (ii) demarcation of the 5"- and 3"- ends of transcripts; (iii)
determination of splice junctions and identification of different
splice variants; and (iv) identification of posttranscriptional tran-
script editing.

Here, we present a general approach to accomplish all of these
goals, based solely on an unannotated genome sequence and data
from a single sequencing run on an Illumina sequencer (2). To test
our approach, we apply it to the budding yeast S. cerevisiae, and
compare our ab initio results to the known transcript annotation
(8). Our approach automatically and fully defines 86% of the genes
expressed under the given conditions, and discovers 160 previously
undescribed transcription units of 250 bp or longer. The approach
correctly demarcates the correct 5" and 3" UTR boundaries of 86
and 77% of expressed genes, respectively. The method identifies
83% of known splice junctions in expressed genes, and discovers 25
previously uncharacterized introns, including evidence for 2 rare
cases of condition-dependent ‘‘alternative splicing.’’ Last, we use
the data to quantify absolute and relative expression levels of each
transcript, showing remarkable agreement with well-established
microarray technologies.

Our results demonstrate that massive, cost-efficient, and fast
sequencing can be used to accurately define and quantify a transcrip-
tome ab initio. To evaluate the strength of our approach, we have
refrained from using other sets of data and gene predictions methods.
However, in many practical cases, these methods can be incorporated
into a single bioinformatics pipeline for a more powerful outcome.
This framework can be readily applied to study poorly understood
organisms, for which only the genomic sequence is known.

Results
Sequencing the Budding Yeast Transcriptome. To define the budding
yeast transcriptome ab initio, we generated cDNA libraries from
poly(A)# mRNA from the budding yeast S. cerevisiae under 2
growth conditions: in rich medium (YPD) and after heat shock
(HS). We used a cDNA preparation procedure that combines a
random priming step with a shearing step (see Materials and
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Methods). This approach has 2 benefits, which are essential for
ab initio predictions. First, unlike other methods that provide a
signal only in the 5" or the 3" end of transcripts, our method results
in signal that covers the whole transcript (Fig. 1A). Second, for
sequencing with short reads, random priming alone results in
extensive nonuniformity in the start sites (9), whereas we obtain
better uniformity.

We sequenced each library using an Illumina 1G Analyzer to
generate 36-bp long reads. We obtained 25,043,976 reads from the
YPD sample (2 biological replicates) and 11,776,251 reads after HS
(see Materials and Methods). The entire experiment (RNA extrac-
tion, library preparation, and sequencing) required $14 workdays.

Then, we developed an accurate method to map reads to their
genomic locations. The sequence matching approach used in pre-
vious studies (3, 4) may fail due to errors in the sequencing process
or repetitive genomic regions (as a result of low-complexity or
homology). Therefore, we developed a detailed probabilistic error
model that scores the genomic matches of reads according to the
position-specific probability of sequencing errors [see Materials and
Methods; also, supporting information (SI) Fig. S1 and Dataset S1].
To minimize mapping errors, a read should match a specific
genomic sequence at a strict threshold and should not match any
other genomic location, even at a more relaxed threshold (see
Materials and Methods). Applying this strategy to our data, we
uniquely mapped 52% of the reads in YPD. We discarded an

additional 23% of the reads that mapped to !1 genomic locus; this
proportion is consistent with expectations due to genomic repeats
(25.5% for 36-bp reads based on simulation). The remaining 25%
reads did not map to any genomic locus at the required stringency
(Fig. 1B). A minority is due to posttranscriptional modifications,
such as splicing (see below). We obtained similar results with the
reads in the HS experiment (Fig. 1B).

Ab Initio Construction of a Transcript Catalog for S. cerevisiae. We next
developed a procedure to ab initio define all of the transcriptional
units expressed under the 2 conditions, using only the mapped
cDNA reads and the (unannotated) genome sequence of S. cerevi-
siae (Fig. 2A). Based on the current annotation of the yeast genome
and microarray-based expression studies (8, 10), we expect 4,630
known genes to be expressed in YPD (at !0.2 transcripts per cell;
see Materials and Methods). We started by identifying contiguous
regions with a density of cDNA reads above a given threshold.
Because genes are densely packed in the S. cerevisiae genome, such
regions can span several genes. Thus, we developed a procedure
that breaks these regions into segments of consistent read density,
reflecting the expectation that transcript levels should be much
more consistent within genes, than between genes (see Materials
and Methods and Fig. 2B; also, Fig. S2). Last, we predicted
transcription orientation based on different read densities between
ends of genes (even in our relatively uniform libraries, there is a
higher read density toward the 3" end, which may be due to the
library preparation protocol; see Materials and Methods and Fig.
2B). In total, we identified 6,248 segments, demarcating putative
transcribed regions.

Before assembling a gene catalog, we next searched for splicing
events. We analyzed the 25% of reads (9,212,859) that did not
match the genome to identify those that may originate from splicing
events. In such events, sequences from 2 exons that are separated
in the genomic sequence are adjacent in the mature mRNA,
yielding reads with a ‘‘gapped alignment’’ (Fig. 2C).

We developed an automatic method to systematically discover
splice junctions. First, we identified reads with a gapped alignment,
involving 2 sites of at least 10 bp each separated by at most 2 Kb (and
together adding up to 36 bp). We required the same noise thresh-
olds as before to filter out mismatches and nonunique matches (see
Materials and Methods). Because we allow only a single gap, the
probability of finding a spurious match is extremely low, although
the precise gap location might be ambiguous by 1 or 2 base pairs,
depending on the exact sequence at the gap boundaries. To
eliminate spurious events, we required splice junctions to be
supported by multiple observations. Specifically, we included all
putative junctions that were either (i) supported by at least 5
independent reads (possibly starting at different locations; 243
junctions); (ii) supported by at least 3 independent reads and
contain donor (5") and acceptor (3") splice site motifs (263 junc-
tions; see http://compbio.cs.huji.ac.il/RNASeq); or (iii) supported
by 2 independent reads and contain very strong splice motifs (13
junctions). This scoring allows us to resolve ambiguities, increase
confidence in gapped reads, and assign an orientation to the
junction (see Materials and Methods and Fig. 2C). The remaining
putative junctions had little support and were discarded. In partic-
ular, shorter junctions are likely due to short deletions in the
genomic DNA of the particular strain, consistent with Illumina
sequencing of the DNA of this specific strain (data not shown). The
resulting set had 285 junctions of 40 bp or longer. Notably, the
majority of these junctions (243/285) were identified by the first
criterion (5 strong junctions lack canonical splice site signals
altogether; see http://compbio.cs.huji.ac.il/RNASeq), demonstrat-
ing the power of ab initio detection.

Joining the putative transcribed units based on the splice junc-
tions, we built a final catalog of the yeast transcriptome in the 2
measured conditions (Fig. 2A; Dataset S2). This catalog includes
6,160 transcripts, 264 of them with at least 1 splicing junction.

Fig. 1. Unbiased sequencing of the yeast transcriptome. (A) Distribution of
reads mapped to the PAP1 locus. Shown are SGD annotations (downloaded at
November 2007) (8), and mapped reads (red, W strand; blue, C strand).
Additional tracks plot the cumulative number of reads covering each base
position (yellow, YPD; light blue, HS). Full data can be accessed at http://
compbio.cs.huji.ac.il/RNASeq, and is visualized using the University of Califor-
nia, Santa Cruz, genome browser (22). (B) Distribution of reads matched to the
genome. Of the 26,050,414 reads sequenced in YPD (Left), 13,424,957 (52%,
blue) were uniquely mapped to a single genomic locus, 6,144,595 (23%,
green) were mapped to several locations, and 6,480,862 (25%, yellow) could
not have been aligned, and were later used to detect splice junctions. Similar
numbers were found after a HS (Right).
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Assessment of Transcription Units of the Catalog. We compared our
ab initio catalog of transcripts with the current annotated tran-
scriptional catalog of the yeast genome. Approaches based on
sequencing of mRNAs cannot discover genes that are not ex-
pressed. Also, because we rely on short reads, we are limited to
identifying transcripts in alignable (nonrepetitive) genomic regions.
By using conservative thresholds, there are 5,437 (94%) known
genes (classified as ‘‘verified’’ or ‘‘uncharacterized’’ ORF genes; see
ref. 8) in the yeast genome that are ‘‘alignable’’ (at 50% coverage
or more) with 36-bp reads, of which 4,784 are expressed in YPD
(see Materials and Methods).

Overall, the ab initio transcriptional units in our catalog cover
99% of these expressed genes over !80% of the length of genes
(Fig. 3A). For 86% of the genes, the transcriptional units fully cover
the known genes (4096/4784; see Fig. 3A). For the remaining 13%
of genes, the genes are largely covered, but correspond to multiple
transcriptional units that have not been confidently connected (due
to gaps or unevenness in coverage, particularly for highly expressed
genes); this problem should be largely eliminated by connecting
transcribing units through the use of ‘‘paired-end’’ reads, which are
now becoming routinely available on the Illumina platform (11).
Last, we correctly assigned orientation to 3,432 genes (84%), based
solely on the pattern of increasing read density from 5" to 3"-end.
Overall, these results demonstrate that we can reconstruct the
compendium of transcripts with great sensitivity and specificity.

Notably, our analysis indicates transcription from some ‘‘dubious
ORFs’’ loci (62 of 206 expressed alignable dubious ORFs that do
not overlap any other gene). In comparison, only 1% of nontran-
scribed loci based on ultradense tiling arrays (12) are covered by
transcription units in YPD. This observation suggests that these are
less likely to be spurious transcription events, and that some of these
loci encode for functional transcripts (possibly noncoding RNAs).

The transcripts in our catalog assign the correct gene structure in
terms of boundaries (and splicing; see below). Notably, because
RNA-sequencing only samples short reads from transcripts, it has
limited ability to accurately determine transcript boundaries in a
highly compact genome (as compared with 5" sequencing methods).
Nevertheless, our transcript boundaries reasonably match several
previous annotations of transcript boundaries in S. cerevisiae. These
include the known annotations (SGD) as well as start site defini-
tions based on previous full-length cDNA sequencing (13) and
ultradense tiling arrays (12). In particular, our 5" UTR positions
match 80% of previous definitions within 50 bp, but have limited
agreement in higher resolution [47% with Miura et al. (13); 22%
with David et al. (12) in 10-bp resolution]. This latter result may be
because our protocol likely misses 8–21 nt at the 5" end of the
transcript (14). Notably, we correctly predict the 3" boundaries of
307 of 501 (60%) pairs of converging genes, and miss the boundary
by at most 50 bp for an additional 58 cases (11%). Differential
expression is a major contributor to correct detection. For correctly
predicted pairs, the mean differential expression ratio is 8.5, whereas for
those pairs that we cannot correctly differentiate, the mean differential
expression ratio is 2.9. By considering the predicted ORFs within our
transcripts, we estimate the typical lengths of 5" and 3" UTRs as 153 bp
(SD of 145 bp), and 169 bp (SD of 142 bp), respectively (see http://
compbio.cs.huji.ac.il/RNASeq; also, Dataset S3).

To our surprise, although 93% of our catalog corresponds to
known genes (Fig. 3B; Dataset S2), we also discovered 160 tran-
scription units of length !250 bp that did not overlap any previously
annotated transcripts (Dataset S2; see ref. 8). Many of these units
are clearly transcribed, for example, a %3,694-bp region at Chro-
mosome 1, coordinates 196277–199970, that we also validated
experimentally (see below). Many of these transcripts have sup-
porting evidence in the raw data from hybridization to tiling arrays
(129 units overlap; see ref. 12) and cDNA sequencing (92 units
overlap; see ref. 13); although these previous studies did not report
them as transcriptional units per se. Some of the units are differ-
entially expressed between YPD and HS (Dataset S2). Most

Fig. 2. Ab initio assembly of a transcript catalog. (A) Outline of steps in the
catalog construction pipeline. (B) Segmentation of a contiguously transcribed
region into 2 regions of distinct expression levels corresponding to the genes
YBR287W and APM3. When using YPD reads alone, both genes exhibit similar
coverage and thus cannot be segmented. However, in HS, they are differentially
expressed, and hence by combining observations from both conditions the au-
tomatic segmentation procedure (see Materials and Methods) correctly sepa-
rates them to 2 units. Tracks from top to bottom: SGD annotations (blue), our
catalog (green), read coverage at YPD (yellow), and read coverage at HS (blue).
(C) Detection of splice junctions. Full and gapped reads mapped to the RIM1
genomic locus. Tracks are as in B, together with gapped reads (connected seg-
ments), our putative splice junctions (in red and blue), including the junction
orientations as estimated by donor and acceptor sequence motifs (arrows). As
shown, our procedure identifies the exact coordinates and orientation of the
known splice site.
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notably, 12/160 novel units have are induced 10-fold or higher in HS
vs. YPD, and 2 of those are not detected at all in YPD.

Overall, the previously undescribed units are mostly short (mean
length of 713 bp, SD of 431 bp), and many are likely not coding for
a protein. Several lines of evidence support this conclusion. First,
the predicted ORFs are usually short (mean predicted ORF of 51
aa, SD of 19 aa, 20 units !80 aa; see Dataset S2), and do not match
predicted or known proteins in other fungal species. Second, when
sampling regions of the same length at random from intergenic
regions, the median length of predicted ORFs is 146 aa, in contrast
to the much shorter median length of predicted ORFs in these
transcription units (48 aa). Last, relatively few of the units are evolu-
tionary conserved (28/160 units !50% conservation; see ref. 15), which
is not significant when compared with random (P & 0.059).

We experimentally tested and verified 4 of these novel transcripts
by RT-PCR followed by sequencing. These included: (i) the novel
%3,694-bp transcript discussed above (Chromosome 1, 196277–
199970; see Fig. S3A); (ii) a transcribed pseudogene at Chromo-
some 15, coordinates 36742–38650 (Fig. S3B); (iii) a novel tran-
scription unit at the YMR194C locus that spans both a dubious
ORF (YMR194C-B) and the gene YMR194C-A (Fig. S3C); and (iv)
a predicted 900-bp 3" UTR for the FEN2 gene. In the latter 2 cases, the
novel transcriptional units overlap, expand, or modify dubious ORFs or
pseudogenes. For example, the novel transcription unit at the
YMR194C locus also includes a 200-bp 3" UTR past the predicted stop
codon of YMR194C-A, suggesting a recent pseudogene.

Validation of Splice Junctions. Our splice site predictions are also
highly accurate and sensitive, as compared with the known anno-
tated junctions. The 285 ab initio detected splice junctions include
most of the annotated junctions in the yeast genome (Fig. 3C;
Dataset S2). We predict 254 (83%) out of 305 known junctions
within 5-bp resolution. Of the 51 missed junctions, 21 are in non
unique ‘‘unalignable’’ regions (telomeres and ribosomal protein
genes), and 21 have very low read coverage (Fig. 3D). From the
remaining 9 cases, we see read-through transcription in 4 undetected
junctions, whose introns are matched by a significant number of reads
(see http://compbio.cs.huji.ac.il/RNASeq), and determine a corrected
location for 1 junction (LSB3 gene; see below). Thus, in only 4 of the
51 cases, we do not detect spliced reads for unknown reasons.

We also discovered 25 previously uncharacterized splice junc-
tions that are not close to any annotated ones (one is an ‘‘artifact’’
caused by the HIS3 deletion in this strain). To study the implications
of these splice junctions, we examined their effect on transcript
structure. We found that 11 of the putative junctions are within

annotated coding regions and affect the encoded protein, either by
modifying existing introns, or by introducing additional ones (Data-
set S3). For example, in the LSB3 gene, our putative intron is 24-bp
shorter than the known one, adding 8 aa to the translated protein.
When compared with other yeast species, the 8-aa stretch shows
clear evolutionary conservation in the orthologous proteins (Fig.
S4; see ref. 16); thus, it appears to be a conserved part of the protein.

In 6 of these junctions, we see evidence for alternative splicing
(intron retention), because 3 junctions appear only in YPD and 3
only in HS (while taking into consideration the number of full reads
aligned in both conditions; see http://compbio.cs.huji.ac.il/
RNASeq). For example, in the MRM2 gene, the discovered intron
is spliced out only in YPD; thus, creating a shorter protein, which
perfectly aligns with orthologs of this gene in Kluyveromyces lactis,
Candida lusitaniae, Debopriya hansenii, Candida guilleromondi, Candida
tropicalis, and Candida albicans. In C. albicans, for example, the intronic
sequence is completely missing from the genome, strongly supporting
the functionality of this spliced form. Similarly, in the APE2 gene, the
HS intron is slightly shorter, which creates a protein that is 6-aa shorter
than the regular one. This modified protein has a domain that fits
orthologs of this gene in Saccharomyces paradoxus, Saccharomyces
mikatae, and Saccharomyces bayanus.

We experimentally tested 6 predicted splicing events and vali-
dated 4 of them (in the genes FES1, YMR148W, RPS22B, and
AGA2) using RT-PCR and sequencing (Fig. 3E; Fig. S5). For
example, in the FES1 gene, our catalog identified a previously
uncharacterized intron with full reads through the splice junction
and inside the intron, suggesting alternative splicing (Fig. 3E). In the
spliced variant, the annotated stop codon is abolished and a later
stop codon is introduced, resulting in a 10-aa extension. Validation
by RT-PCR shows bands consistent with both the spliced and
unspliced variants (sequencing of these bands confirmed the splice
site). Another example of alternative splicing is the SUS1 gene,
where, in addition to the 2 known introns, we also observe clear
read-through at both junctions (Fig. S5A). Experimental validation
confirms our predictions by revealing 3 bands, 2 bands consistent
with just 1 intron spliced, and a stronger band consistent with both
introns spliced out. A third example is an intron from the end of the
snoRNA, SNR44, to the acceptor site of its hosting intron, inside
RPS22B (Fig. S5B). All experimental validations were performed
by RT-PCR followed by sequencing of the bands to verify the exact
splice site. The predicted splice junctions that we could not validate
may be in low-abundance or represent partial splicing.

Fig. 3. Validation of the transcript
catalog. (A) Coverage of the top 86%
expressed genes by our predicted tran-
scribed units, based on different pat-
terns of coverage. (B) Relationship be-
tween found transcribed units and
annotated transcribed features from
SGD. In both A and B, white boxes de-
note genes, and purple boxes denote
transcribed units. (C) Comparison of
our putative splice junctions (blue) to
known ones (green). (D) The 51 known
introns missed by our predictions are
partitioned into 8 categories. (E) Vali-
dation of splicing read-through in the
gene FES1. Tracks are as in Fig. 2C, in-
cluding the evolutionary conservation
of each position across 7 yeast species
(15).
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Inferring Expression from Massively Parallel Sequencing. Having
defined a gene catalog, we then examined the ability to infer
quantitative expression levels from sequence abundance. We esti-
mated the mRNA abundance of known annotated ORFs by
calculating the average density of reads along each ORF and
compared the results with expression data from microarrays. We
converted the read densities per gene to rough assessments of
absolute mRNA copy numbers per cell, using a conservative
estimation of 15,000 transcripts per yeast cell (17). This analysis
reveals at least 4 orders of magnitude differences in mRNA copy
number among genes. For example, we find an average of 26
mRNA copies per cell for the top 5% of expressed genes, in contrast
to an average of 0.0026 copies per cell for the bottom 5% (Fig. S6A).
The top 5% of expressed genes in YPD account for 58% of the
transcriptome, mostly comprised of transcripts encoding protein
biosynthesis proteins and central carbon metabolism enzymes. Our
mRNA copy number estimates are consistent with previous esti-
mates using DNA microarrays (Pearson correlations of 0.67, P $
10'300; 0.72, P $ 10'300; and 0.83, P $ 10'300, respectively; see
Dataset S3 and Fig. S7) (3, 10, 18).

To calculate the relative expression level of each gene in HS vs.
YPD, we compared the read densities in the 2 conditions. We
compared the result with relative expression levels for the same
mRNA samples inferred by commercial 2-dye microarrays (see
Materials and Methods). Indeed, these ratios show strong agreement
(Pearson correlation coefficient of 0.87, P $ 10'300; see Fig. S6B).
These results were reproducible across sequencing and microarray
replicates (Dataset S3; http://compbio.cs.huji.ac.il/RNASeq), con-
sistent with recent studies (5).

Discussion
We set out to test whether it is possible to define a complete yeast
transcriptome ab initio using only the (unannotated) genome
sequence and massively parallel sequencing of cDNA from 1 or
more experimental conditions. Our approach independently iden-
tifies the vast majority of known genes transcribed under the tested
conditions, correctly infers splicing events, and detects the correct
gene structure. Also, it corrects a number of current annotations and
identifies previously undescribed transcriptional units and splice junc-
tions, several of which we validated experimentally. Last, the method
can also accurately quantify the expression levels of transcripts.

There are several crucial steps in the strategy. First, the creation
of the cDNA fragments determines the transcript coverage. The
laboratory protocol that we used here is only mildly biased toward
the 3" end of the transcript and thus provides efficient coverage
throughout the transcript, allowing us to effectively assemble
transcripts from short reads. Second, to accurately map reads to the
reference genome, we created a sequencing noise model to limit the
errors in mapping. Because the yeast genome has large unique
regions, we can estimate the error model from the data without
requiring calibration runs. Using this model, we correct for varying
quality among batches. Unlike previous read mapping approaches
(19), our method estimates the noise model separately for each
batch; thus, it is more specific and, depending on the model, may
allow for more mismatches if their probability is higher. Third, using the
error model and sequence similarity tests, we reliably identify reads that
are split between 2 genomic positions. This step is crucial for identifying
splice junctions ab initio and defining correct gene structures, and is
distinct from previous read mapping approaches (19).

Our approach has several limitations. First, we are unable to
predict transcriptional units for low-copy transcripts and nonunique
regions (e.g., at the telomeres). Although we can estimate relative
expression of some low-copy transcripts, we cannot reliably deter-
mine splicing events or boundaries in such genes. We partially
address this issue by creating libraries from YPD and HS. Deeper
sequencing and libraries from additional conditions can further
improve the completeness of the catalog. Second, we miss splicing
events due to local nonuniqueness at the splice junction. We can

alleviate this problem by sequencing either longer reads or paired-
end fragments, both of which are becoming available (11). Last, our
approach is limited in detecting and distinguishing antisense tran-
scripts and differentiating between close divergent transcription
units due to the lack of strand specificity. Although in most cases
we can recover transcript orientation, we can further improve the
predictions by constructing strand-specific cDNA libraries.

Unlike recent studies (3, 5), we demonstrate the use of massively
parallel sequencing for complete, ab initio construction of a eu-
karyotic transcriptome, independent of any existing genome anno-
tation. For example, Mortazavi et al. (5), and several similar
approaches (3–7), use a step-wise mapping approach that relies on
mapping reads to known gene models, exons and splice junctions.
De novo discovery in these schemes is also limited, and is based on
mapping reads to all possible combinations of known exons. Such
approaches cannot detect splice junctions between unannotated
exons. Also, they are not applicable to a genome for which there are
poor (or no) gene predictions. In contrast, our approach searches
for all the locations where a spliced version of an unaligned read can
be mapped in the genome. Thus, our approach will be useful for both
smaller more compact genomes, such as those of fungi or protists that
often involve phylogenetically isolated groups for which there are poor
gene predictions (20), as well as for aberrant cancer genomes.

Our work powerfully demonstrates the feasibility of constructing
a transcriptome of an organism in a comprehensive, fast, and cheap
way. To estimate the power of this approach, we conducted our
analysis in isolation from any other source of data or gene predic-
tion methods. Nevertheless, we anticipate that in many practical
setups it can be powerfully combined with other gene prediction
approaches. Applying our approach to explore the transcriptomes
of less characterized organisms in an ab initio fashion, can have a
significant impact on genomics studies.

Materials and Methods
Yeast Strains and Growth Conditions. HS experiment. The strain used was a
derivative of the S. cerevisiae strain S288c (BY4741; see ref. 21). We grew 1-L
cultures overnight in YPD medium (1% yeast extract, 2% peptone, 2% dextrose)
to an OD600 of %1.0. The cultures were split and 1 flask was submerged in a 37 °C
water bath and the other in a 22 °C water bath; 50-mL samples were harvested
after 0 and 15 min.
RNA extraction and library preparation. Total RNA and polyA# RNA were isolated
by using the RNeasy Midi Kit (Qiagen) and Poly(A) Purist kit (Ambion), respec-
tively. Samples were quality controlled with the RNA 6000 Nano ll kit of the
Bioanalyzer 2100 (Agilent). Sheared cDNA libraries were created for 6 samples
(22 °C, 0 min; 22 °C, 15 min; 37 °C, 15 min; 2 replicates per condition; 150 ng of
polyA# RNA per sample). The cDNA was synthesized by using the SuperScript
Double-Stranded cDNA Synthesis kit (Invitrogen) with SuperScript III (Invitrogen),
15-ng random hexamers (Invitrogen), and 20 units SUPERase"In (Ambion). Primer
annealing was done at room temperature for 10 min followed by 1 h at 55 °C for
first strand synthesis and 2 h at 16 °C for second strand synthesis; cDNA was
sheared by sonication with 12 alternating cycles between ‘‘high intensity’’ (30 s;
dutycycle,20%; intensity,10%;cyclesperburst,200)and‘‘lowintensity’’ (4s;duty
cycle, 5%; intensity, 10%; cycles per burst, 200) in the Frequency Sweeping mode
(CovarisS2machine).Adaptersfor Illuminasequencingwereaddedfollowingthe
instructions provided, except that 5 times less adapter mix was ligated to the
cDNAs and PCR primers were removed by digestion with RecJ (New England
Biolabs). Each library had an insert size of 60 to 110 bp. One lane of sequence (5.4
to 7.0 M reads) was generated for each sample on an Illumina 1G sequencer.

Genomic Mapping of Reads. Error model. We developed a detailed probabilistic
model for scoring the quality of matching reads to the genome. Our score
depends on the specific type of sequencing error made (e.g., genomic A se-
quenced as C) and its position within the sequenced read. Formally, the score of
obtaining a read R originating from a genomic sequence G equals
(i&1

36 log2(Pr(Ri!Gi,i)), where i is the position within the read, Ri is the sequenced
nucleotide at position i, and Gi is the nucleotide at the corresponding genomic
position. To estimate the error parameters, we identified reads with up to 4
mismatches to highly unique regions of the genome. Then, we estimated the
fraction of errors at each position for each genomic nucleotide (Fig. S1).
Mapping method. To map the sequenced reads to the genome with minimal
errors, we devised the following strategy. Each read was compared with every
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possible 36-bp window in the genome and scored according to the error
model above. We developed a procedure that uses suffix trees to efficiently
finds all of the matches above a predefined threshold. To filter the matches,
we require that the read matches the assigned genomic sequence with a
threshold ('8.3) that assures correct mapping of 95% of reads (based on
simulations). Also, to ensure uniqueness, we require the match to remain
unique even when allowing a more relaxed threshold ('11.5).

Detection of Transcriptional Units. Segmentation of transcriptional units. To
identify transcriptional units, we first artificially extended mapped reads to
partially reconstruct the dsDNA segments they originated from. Because the
segment size in our library varies between 60 and 110 bp, we chose a conservative
approachandextendedeachreadbyanadditional40bp(eachreadisnow76bp).
We then identified contiguously covered genomic regions. In many cases, these
regions contained !1 gene, due to overlapping neighboring transcripts in the
dense yeast genome. To refine these regions into single transcribed units, we
developed an automated segmentation algorithm to fit the genomic patterns of
mapped reads using piecewise linear regression (Fig. S2). Neighboring genes
often exhibit different expression levels allowing an accurate partition. To
achieve a coherent segmentation, we applied our algorithm to YPD and HS data
simultaneously. This strategy also allows us to use the transcriptional differences
of genes between the 2 conditions. For example, the 2 neighboring genes
YBR287WandAPM3(Fig.2B; Fig. S2)havesimilarexpression levelsatYPD;hence,
preventing a proper segmentation to 2 transcription units. However, at HS,
YBR287W is expressed in much higher levels than APM3, allowing us to position
the boundary between the 2 genes.
Definition of nontranscribed loci. For a negative control, we applied a sliding
window of 75 bp over the data of David et al. (12), and identified 892 loci that
presented the lowest mRNA to genome signal in YPD.
Automated determination of orientation. As demonstrated in Fig. 2B, the typical
density of reads is not completely uniform along the transcript with higher
density towardthe3"end.Weusethispatterntoestimatetheorientationofeach
transcription unit. We use the slope of our piecewise linear fit to determine the
orientation of each transcription unit. Specifically, we estimate a 95% confidence
interval of the regressed slope parameters, and assign a forward or reverse
orientation to the transcription unit if the entire interval is orientation-consistent
(above or below zero, respectively).
Detection of splice junctions. First, we map gapped reads by searching for
coordinated partial matches to 2 genomic loci within 2 Kb, each one of at least
10 bp (and together adding up to 36 bp). We require the same noise thresholds
to filter out mismatches and nonunique matches. Specifically, we score each
putative match with the score described above, allowing a single gap in the
genomic sequence. Second, we calculate the position-specific scoring matrix
(PSSM) score for each gapped read, according to the splice motifs we learned
from the known introns (see http://compbio.cs.huji.ac.il/RNASeq). Third, we
cluster gapped reads by the genomic location of their gaps. Each cluster
defines a putative junction in the transcriptome, and is characterized by the
number of supporting reads and the PSSM score of the junction. We assign
orientation to each putative junction using these asymmetric PSSM motifs. We
define a threshold over the PSSM log-odd scores (2.78), such that 95% of the
known splice junctions (based on SGD annotations, October 2007) are iden-
tified in the correct orientation.

Definition of Alignable Expressed Genes. A genomic location is ‘‘nonalignable’’
if reads originating from that location will be mapped by our method to at least
one other location in the genome; otherwise, we say that the location is align-

able. We define a gene to be alignable if at least 50% of locations within its
coding region are alignable. We define genes, known from previous studies to
haveat least0.2mRNAcopiesper cell (onaverage) (10), as ‘‘expressed,’’ reflecting
85% of the transcriptome at YPD condition.

Estimation of Gene Expression Levels. Using annotations from SGD (October
2007), we calculate the number of reads mapped to each coding region. We
approximate the expression level of each gene by the average density of reads
along the unique (alignable) part of the coding region. This measure is expressed
in arbitrary units of number of reads per lane per 1-K base pairs, and is assumed
to be proportional to the actual number of mRNA molecules per cell. Assuming
a conservative estimation of 15,000 transcripts per cell (17), we can assess the
expected number of copies for each gene. Relative expression levels (HS vs. YPD)
arecalculatedbycomparingtheaveragedensityofeachgeneat the2conditions.

Relative Gene Expression Using Commercial Arrays. PolyA# RNA samples from
one replicate each of the 37 °C, 15 min (HS) and 22 °C, 15 min (YPD reference)
were labeled with either Cy3 or Cy5 by using a modification of the protocol
developed by De Risi (University of California, San Francisco) and Rosetta Inphar-
matics that can be obtained at http://www.microarrays.org. For the detailed modi-
fiedprotocol seehttp://compbio.cs.huji.ac.il/RNASeq.Four technical replicatesof the
HSsampleswerehybridizedagainstthereferenceoncommercialS.cerevisiae (S288C
strain) 2-color 60-mer oligo Agilent arrays in the 4 ) 44 K format (Agilent). After
hybridization and washing per Agilent instructions, arrays were scanned by using a
scanner (Agilent) and analyzed with a feature extraction software (Agilent).

Validation of Novel Transcription Units and Splice Sites. RNA from the HS and
YPD reference samples was treated with TURBO DNA-free Kit (Ambion) to
remove trace amounts of genomic DNA; cDNA was synthesized from this RNA by
using a SuperScript Double-Stranded cDNA Synthesis Kit (Invitrogen). Assays
were designed to detect predicted RNA species by the PCR. Reactions were
performed under the conditions specified in the Amplitag gold polymerase
product manual (Applied Biosystems) by using 10 ng of cDNA as template in a
volume of 50 "L. For primer sequences, see http://compbio.cs.huji.ac.il/RNASeq.
Products were amplified by using the following Thermocycler program: i, 95 °C
for 5 min; ii, 95 °C for 30 s; iii, 56 °C for 30 s; iv, 70 °C for 45 s; go to step 2 for 40
cycles; v, 70 °C for 7 min; vi, 4 °C forever. PCR products were separated by using 3%
Metaphoragarose(Cambrex)gels.TheDNAfragmentswereisolatedfromthegelby
using a QIAEX ll Gel extraction kit (Qiagen). These fragments were cloned by using a
TOPO TA Cloning Kit for Sequencing (with pCR4-TOPO) with One Shot TOP10
Chemically Competent Escherichia coli and PureLink Quick Plasmid Miniprep Kit
(Invitrogen). Insert containing constructs were sequenced at the Massachusetts In-
stitute of Technology core facility. Sequences were verified by using the BLAST
function at the Saccharomyces genome database (www.yeastgenome.org/).

Supplementary Web Site. Raw data and additional notes and figures can be
found at our supplementary web site (http://compbio.cs.huji.ac.il/RNASeq).
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Strand-specific, massively parallel cDNA sequencing (RNA-seq) 
is a powerful tool for transcript discovery, genome annotation 
and expression profiling. There are multiple published methods 
for strand-specific RNA-seq, but no consensus exists as to how 
to choose between them. Here we developed a comprehensive 
computational pipeline to compare library quality metrics from 
any RNA-seq method. Using the well-annotated Saccharomyces 
cerevisiae transcriptome as a benchmark, we compared seven 
library-construction protocols, including both published and 
our own methods. We found marked differences in strand 
specificity, library complexity, evenness and continuity of 
coverage, agreement with known annotations and accuracy 
for expression profiling. Weighing each method’s performance 
and ease, we identified the dUTP second-strand marking and 
the Illumina RNA ligation methods as the leading protocols, 
with the former benefitting from the current availability of 
paired-end sequencing. Our analysis provides a comprehensive 
benchmark, and our computational pipeline is applicable for 
assessment of future protocols in other organisms.

Recent advances in massively parallel cDNA sequencing (RNA-
seq) have opened the way for comprehensive analysis of any tran-
scriptome1. In principle, RNA-seq allows analysis of all expressed 
transcripts, with three key goals: (i) annotating the structures of 
all transcribed genes including their 5  and 3  ends and all splice 
junctions2–4, (ii) quantifying expression of each transcript5,6 and 
(iii) measuring the extent of alternative splicing7–11.

Standard libraries for RNA-seq do not preserve information 
about which strand was originally transcribed. Synthesis of ran-
domly primed double-stranded cDNA followed by addition of 
adaptors for next-generation sequencing leads to the loss of infor-
mation about which strand was present in the original mRNA 
template. In some cases, strand information can be inferred by 
subsequent computational analyses using, for example, open 
reading frame (ORF) information in protein-coding genes, biases 
in coverage between 5  and 3  ends4 or splice-site orientation in 
eukaryotic genomes4,10,11.

Nevertheless, direct information on the originating strand can 
substantially enhance the value of an RNA-seq experiment. For 
example, such information would help to accurately identify anti-
sense transcripts, with potential regulatory roles12, determine the 
transcribed strand of other noncoding RNAs, demarcate the exact 
boundaries of adjacent genes transcribed on opposite strands and 
resolve the correct expression levels of coding or noncoding over-
lapping transcripts. These tasks are particularly challenging in 
small microbial genomes, prokaryotic and eukaryotic, in which 
genes are densely coded, with overlapping untranslated regions 
(UTRs) or ORFs and in which splice-site information is limited 
or nonexistent.

Many methods have been recently developed for strand-specific 
RNA-seq, and they fall into two main classes. One class relies on 
attaching different adaptors in a known orientation relative to 
the 5  and 3  ends of the RNA transcript (Fig. 1a). These proto-
cols generate a cDNA library flanked by two distinct adaptor 
sequences, marking the 5  end and the 3  end of the original 
mRNA. A second class of methods relies on marking one strand 
by chemical modification, either on the RNA itself by bisulfite 
treatment or during second-strand cDNA synthesis followed by 
degradation of the unmarked strand (Fig. 1b). Both modification 
methods essentially follow the standard protocol for RNA-seq 
with the exception of these marking steps.

Although standard RNA-seq largely relies on one protocol, the 
great diversity of published protocols for strand-specific RNA-
seq poses several challenges. First, when conducting an experi-
ment, researchers are challenged to identify a suitable protocol. 
Furthermore, if protocols vary considerably in their performance, 
the chosen method can dramatically affect the conclusions drawn 
from an experiment, confounding interpretation and comparison 
across studies. There is therefore a substantial need for a sys-
tematic evaluation of the performance of different protocols for 
strand-specific RNA-seq.

Here we present a comprehensive comparison of seven proto-
cols for strand-specific RNA-seq. Using Saccharomyces cerevisiae 
poly(A)+ RNA, we built a compendium of libraries using these 
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protocols and sequenced each of them on an Illumina Genome 
Analyzer instrument to deep coverage. We developed a computa-
tional pipeline to assess each library’s quality according to library 
complexity, strand specificity, evenness and continuity of cover-
age, agreement with known genome annotation and quantitative 
accuracy for expression profiling, in addition to considering the 
ease of laboratory and computational manipulations. We identi-
fied the dUTP and Illumina RNA ligation methods as the leading 
protocols, with the dUTP library providing the added benefit of 
the ability to conduct paired-end sequencing.

RESULTS
A comparison of strand-specific RNA-seq
We evaluated 13 stand-specific libraries. We constructed 11 librar-
ies based on seven strand-specific RNA-seq methods (Fig. 1),  
including two variations for four of the methods. We also compiled 
comparable data for two published libraries: a dUTP library13 
and a library based on another (eighth) method from the differ-
ential adaptor class14 (3  split adaptor; Supplementary Fig. 1).  

Finally, we prepared a standard, non–strand-specific cDNA 
library to use as a control in these comparisons.

We explored two different variations for four of the seven methods  
to improve our libraries (Online Methods). These variations 
were the addition of actinomycin D to the ‘not not so random’ 
(NNSR) library protocol, two published variations of the bisulfite 
library protocol (‘H’ and ‘S’; Online Methods15,16), different size-
selection methods for the Illumina RNA ligation libraries and 
different reverse transcription primers for the dUTP libraries. 
We present results only for the ‘S’ bisulfite library because we 
found no substantial differences between the two libraries in  
our analyses.

We used each method to prepare a cDNA library for Illumina 
sequencing from S. cerevisiae poly(A)+ RNA. We chose S. cerevisiae  
because this eukaryotic model organism has an exceptionally 
well-annotated genome, facilitating quality evaluations. We 
used paired-end Illumina sequencing for each library (Online 
Methods), except for the RNA ligation and Illumina RNA ligation  
libraries, which we sequenced only from the 3  end of each cDNA 
because of the RNA adaptors used in these protocols. These 
approaches could be modified in the future to accommodate 
paired-end sequencing by changing the RNA adaptor and PCR 
primer sequences.

An analysis framework for assessing RNA-seq libraries
To compare the quality of the different libraries, we defined six 
assessment criteria (Fig. 2) implemented in a computational pipe-
line (Online Methods). These criteria were library complexity, 
defined as the number of unique reads (Fig. 2a); strand specificity, 
defined as the number of reads mapping to known transcribed 
regions at the expected strand (Fig. 2b); evenness and continuity 
of coverage at annotated transcripts (Fig. 2c,d); performance at 
5  and 3  ends, defined as agreement with known end annotation 
(Fig. 2d); and performance in expression profiling, defined by 
sensitivity, linearity and dynamic range. With the exception of 
strand specificity, we compared each criterion to that for the con-
trol library. We focused on only one variation per method unless 
there were substantial differences in performance between vari-
ations. We provide the full evaluation results in Supplementary 
Tables 1–2 and Supplementary Figures 2–4.

Equal sampling of reads enables direct library comparisons
We mapped each library’s reads to the S. cerevisiae genome using 
Arachne17. For paired-end libraries, we mapped unique pairs with 
opposite orientations and an appropriate separation; for single- 
end libraries, we identified unique mappings for individual 
reads17 (Online Methods).

The libraries had a broad range of yields, measured by the total 
number of reads and by the number of reads or paired reads 
mapping to a unique location (Supplementary Table 1). In this 
initial comparison, the dUTP library had the highest percent-
age of paired-end mapped reads (Supplementary Table 1). The 
Illumina RNA ligation–solid-phase reversible immobilization 
(SPRI) library, which we prepared using SPRI-based size selec-
tion, had a smaller percentage of unique reads than the Illumina 
RNA ligation library, which we prepared using gel-based size 
selection (35% versus 59%; Supplementary Table 1). This was 
likely due to the difficulty in physically removing cDNAs shorter 
than 76 base pairs with the SPRI method, resulting in the ends 
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A AA AA
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+

SMART–RNA ligation (hybrid)
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Figure 1 | Methods for strand-specific RNA-seq. (a,b) Salient details  
for differential adaptor methods including RNA ligation29, SMART30 and 
NNSR priming31 (a) and differential marking methods (b). USER, uracil-
specific excision reagent. mRNA is shown in gray and cDNA in black.  
For differential adaptor methods, 5  adaptors are shown in blue, and  
3  adaptors are shown in red.
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of sequencing reads containing an Illumina adaptor sequence 
that could not be aligned to the yeast genome. Indeed, when 
we trimmed these reads to 51 bases, the percentage of aligned 
reads improved dramatically (data not shown). Below, we report 
results only for the Illumina RNA ligation library, which we pre-
pared using gel-based size selection.

Some of this variation in performance may reflect varia-
tion in sequencing yields between sequencing runs and lanes 
(Supplementary Table 1), unrelated to the library protocol. As 
many of our measures were sensitive to read quantity and length, 
we used sampling to obtain the same number of reads from each 
library (Online Methods). Unless specifically noted, we conducted 
all subsequent comparisons with 2.5 million sampled reads from 
each library. The ‘switching mechanism at 5  end of RNA template’ 
(SMART) library had only 930,686 reads because of repeated poor 
yields, but with the exception of complexity, we obtained overall 
similar results when using the SMART reads ‘as is’ (without any com-
pensatory calculations for there being fewer than 2.5 million reads) 
or when randomly resampling the same reads more than once to 
reach 2.5 million (data not shown). To compare libraries with dif-
ferent read lengths (51 or 76 bases in our libraries and 36 bases in 
published data), we sampled the first 36 bases of every read.

Complexity of single- and paired-end libraries
We next assessed the complexity of each library, defined as 
the number of distinct (unique) read start positions (Fig. 2a). 
A high complexity library, with many different start positions, 
is preferable as it does not suffer from ‘jackpot’ effects in frag-
ment amplification or a strong bias in selection of fragment ends. 
Using single-end mapping (Fig. 3a and Supplementary Table 2),  
we observed the best complexity for the control library (42% 
unique) followed closely by the 3  split adaptor method (42% 
unique), SMART (41% unique) and the published dUTP method  
(40% unique).

Single-read complexity calculations may overestimate the 
number of redundant cDNAs in a library. For paired-end librar-
ies, we also estimated complexity as unique pairs of start and end 
positions (Fig. 3b), because cDNAs that have the same start site 

for one read can be distinguished based on 
a different start site for the other read in 
the pair. Comparing paired-end libraries 
by this measure, we found that the control 
and dUTP libraries performed best, with 
88% and 84% unique paired reads, respec-
tively. This demonstrates that paired-end 
sequencing substantially improves estimates 
of library complexity relative to estimates 
using only single reads.

Strand specificity across libraries
We measured the strand specificity of 
each library by comparing the mapped 
reads to the expected transcribed strand 
based on the known S. cerevisiae annota-
tion (Online Methods). Based on recent 
studies18, we conservatively assumed 
that most of the S. cerevisiae genes are 
not transcribed from the antisense strand 
and used the fraction of reads mapped 

to the opposite (antisense) strand of known transcripts as a 
measure of strand specificity (Fig. 2b, Supplementary Table 2 
and Online Methods).

Four of the protocols, RNA ligation, Illumina RNA ligation, 
dUTP and NNSR (with actinomycin D), performed best, whereas 
the SMART approach was the least strand-specific method, by 
a wide margin (Fig. 4 and Supplementary Fig. 5). Only 0.47–
0.63% of the reads mapped to the antisense strand for the four 
best performing methods. Notably, addition of actinomycin D 
dramatically improved the strand specificity of the NNSR method 
(Supplementary Table 2). Actinomycin D treatment cannot be 
used to improve the strand specificity of SMART because it inhib-
its both second-strand synthesis and template switching19 (X.A. 
and J.Z.L.; data not shown).

Evenness and continuity of annotated transcript coverage
Using RNA-seq for effective transcriptome annotation, which 
includes transcript assembly3,4, separating neighboring genes cor-
rectly and identifying full-length transcripts with correct 5  and 
3  ends requires even, continuous and complete coverage along 
each transcript’s length.

a High complexity: reads have varied starting points

Low complexity: reads have same starting point

b Antisense orientation reads measure strand specificity

Sense orientation
(as annotated) Antisense orientation

Overlaps 
two genes

(not counted)

Does not 
overlap

known genes

c Even coverage: low coefficient of variation

Uneven coverage: high coefficient of variation

d Performance assessed by comparison with known
annotation at ends

5  end 
coverage

Segmentation
(gaps in coverage)

3  end 
coverage

Continuity of coverage of annotated transcripts

Gene
Gene

Gene
Gene

Gene
Gene

Gene
Gene

Gene
Gene

Gene
Gene

Figure 2 | Key criteria for evaluation of strand-specific RNA-seq libraries. (a–d) Categories of quality 
assessment were complexity (a), strand specificity (b), evenness of coverage (c) and comparison to 
known transcript structure (d). Double-stranded genome with gene ORF orientation (blue arrows) 
and UTRs (blue lines) are shown along with mapped reads (black and red arrows, reads mapped to 
sense and antisense strands, respectively).
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To measure evenness of coverage for each library, we calculated 
the average of the coefficient of variation of gene coverage for the 
top 50% expressed genes (Figs. 2c and 4a, Supplementary Fig. 5 
and Supplementary Table 2). We found the most even coverage for 
the 3  split adaptor method14 (average coefficient of variation, 0.54), 
closely followed by that for the dUTP approach (average coefficient 
of variation of 0.64 in the original dataset13 and 0.76 in our hands).

We defined two measures of continuity of coverage. First, 
we counted the number of segments into which each known 
transcript was broken, where we defined a break as a stretch of 
at least five bases without read coverage (Figs. 2d and 5a and 
Supplementary Table 2). We then averaged this measure across 
all genes, weighting by the relative expression of each gene  

(we expected low-expressed genes to be less covered and more 
segmented). The best performing methods by this measure were 
the 3  split adaptor method14 (2.29 segments per gene), the dUTP 
libraries (2.41 and 2.48 segments per gene with published data13 
and in our hands, respectively) and the Illumina RNA ligation 
libraries (2.61 segments per gene).

Second, we calculated the fraction of bases without cover-
age in each transcript (Figs. 2d and 5b–e and Supplementary 
Fig. 2) and examined the distribution of this fraction at differ-
ent expression levels, as defined by pooling data across libraries 
(Online Methods). As expected, in all libraries, the fraction of 
uncovered bases decreased as expression increased (Fig. 5b–e and 
Supplementary Fig. 2). However, both the rate of decrease and the 

coverage per transcript at higher expres-
sion levels were variable between better 
performing libraries (Fig. 5c,d) and poorly 
performing ones (Fig. 5e). To systemati-
cally assess this difference, we compared 
the Lowess fits of each of the distributions 
(Fig. 5b and Supplementary Fig. 2).  
We found that the dUTP (both in our 
hands (Fig. 5c) and in published data13) 
and 3  split adaptor (Fig. 5d) methods  
performed best.

Coverage at 5  and 3  ends
Coverage at 5  and 3  ends is crucial for 
correctly identifying full-length tran-
scripts. To estimate this, we computed for 
each library the average coverage at each 
percentile of length from the annotated 
5  end to the annotated 3  end of known 
transcripts18 (Figs. 2d and 4b), as well as 
the number of genes with complete cover-
age of their 5  and 3  ends (Fig. 4c). For 
paired-end libraries, we computed 5  and 
3  end coverage based on both read pairs, 
thus estimating coverage of each end based 
on the relevant read.

We found substantial variation in the 
average coverage along a gene’s length, with 
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specific biases in 5  and 3  coverage (Fig. 4b,c, Supplementary 
Fig. 3 and Supplementary Table 2). The NNSR library data had 
more coverage at the 5  ends of transcripts, whereas the remaining 
libraries had modestly increased coverage of the 3  ends (Fig. 4b  
and Supplementary Fig. 3). Consistent with its evenness and 
continuity, the 3  split adaptor method had the best coverage of 
both 5  and 3  ends (75% and 77% of genes covered completely 
at each end, respectively), followed by the dUTP method (62% 
and 73%) (Fig. 4c and Supplementary Table 2). The addition of 
oligo(dT) primers for reverse transcription for the dUTP method, 
both in our results and in the published data13, did not increase 
the coverage at the 3  ends (Supplementary Table 2), although 
more lenient read mapping may assist with this task in reads that 
contain portions of the poly(A) tail.

Performance for digital expression profiling
We compared the performance of each library in digital expres-
sion profiling relative to reference expression measurements 
estimated from three ‘standard’ sources: the control (non– 
strand-specific) library; a pooled estimate generated from the 
sampled reads of nine of the strand-specific libraries (Online 
Methods); and expression profiles measured by competitive 
hybridization of a mid-log phase RNA sample versus genomic 
DNA using Agilent arrays (Online Methods). We calculated the 
expression of each gene as its length-normalized read coverage 
and normalized all values for the total number of reads.

We used several standard quality measures20 to estimate each 
library’s performance. These included the Pearson correlation coeffi-
cient of expression levels across all genes (Fig. 6a and Supplementary 

Table 2); the root mean squared (r.m.s.) error of the expression meas-
urements in each library using the reference measurement as the 
expected level (Fig. 6b and Supplementary Table 2); and scatter, 
quantile-quantile (Q-Q) and MA21 plots—the  last of which compare 
for each gene the difference in expression between two libraries to the 
mean expression of that gene in the two libraries (Online Methods, 
Fig. 6c,d and Supplementary Fig. 4) that help compare differences 
in expression levels across the dynamic range.

We found that the dUTP library had the best correlation 
and lowest r.m.s. error relative to all three references (Fig. 6b 
and Supplementary Table 2). The only exception was that the 
Illumina RNA ligation method had a slightly better (0.95 versus 
0.94) correlation to the pooled library (Supplementary Table 2). 
Furthermore, visual inspection of the scatter, Q-Q and MA plots 
showed an excellent linear relation between the dUTP library and 
the control library across a broad range of values, with weaker 
performance only for genes with very low expression (Fig. 6c). 
The Illumina RNA ligation protocol also performed reason-
ably well based on the correlation and r.m.s. error measures 
but with noticeably broader scatter across the expression range 
(Supplementary Fig. 4). The worst performing methods were 
the SMART, NNSR and 3  split adaptor libraries (Fig. 6d and 
Supplementary Fig. 4), by all measures.

DISCUSSION
The evaluated RNA-seq protocols broadly represent exist-
ing approaches (for a summary of their relative merits, see 
Supplementary Table 3), and we excluded some protocols because of 
well-known technical limitations, incomplete method development  
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or high similarity to tested methods. These excluded protocols 
comprise single-stranded cDNA library synthesis22 (owing to  
chimeric cDNAs created); deep sequencing of ribosome-protected 
mRNA fragments14 (because cDNA lengths are too short, and the 
original method involves a complex procedure for RNA prepara-
tion; we included published data from the nonprotected library 
designated as the 3  split adaptor method; Supplementary Fig. 1);  
Helicos single-molecule digital gene expression23 and direct RNA 
sequencing24 (coverage heavily biased to the 5  or 3  ends of tran-
scripts, respectively; the latter is currently still under development); 
and ligation of adaptor to 5  end and C-tailing at 3  end of RNA25 
and the double-random priming method26 (similar to NNSR). 
We did not include FRT-seq27 and SOLiD Whole Transcriptome 
Analysis kit (Applied Biosystems)28 because they are similar to 
the two RNA ligation methods we tested, and it would be difficult 
to distinguish differences owing to library construction methods 
from those because of the different sequencing methods.

In addition to the formal criteria we evaluated, there is substan-
tial variation in the experimental complexity of different protocols 
(Supplementary Table 4). The original RNA ligation method is 
the most labor intensive and requires substantial amounts of start-
ing material. The NNSR protocol is the simplest. It is unclear how 
well the original RNA ligation method can be adapted to larger 
fragments (greater than 152 base pairs) needed for paired-end 
sequencing with 76-base reads as it requires the adaptor-ligated 
RNA to be separated on a gel from unligated RNA, an increasing 
challenge as the length of the RNA increases.

The libraries also vary in the facility of computational analysis, 
in particular at early processing steps. The bisulfite method is the 
most computationally challenging, as reads must be aligned to 
two reference ‘genomes’ that have all the cytosine bases converted 
to thymine bases on one of the two strands. This alignment is 
complicated both by the imperfect efficiency of the bisulfite treat-
ment and by inherent sequencing errors.

Our analysis allowed us to assess the tradeoff between differ-
ent protocol modifications. For example, we found that actino-
mycin D improved the strand specificity of the NNSR protocol 
(Supplementary Table 2) but had the opposite effect on the 
coefficient of variation, 5  and 3  end coverage and correlation of 
expression levels (Supplementary Table 2). For the Illumina RNA 
ligation libraries, it is preferable to use gel size selection rather than 
SPRI because removing the shorter cDNAs increased the fraction of 
reads aligning to the yeast genome. If read length is reduced below 
76 bases, this may be less of an issue, but such a choice would also 
impact other sequencing outputs. Notably, SPRI is amenable to 
liquid handling automation and can increase the throughput and 
convenience of any of the other methods, except for RNA ligation.  
Although these modifications impacted library quality for the 
NNSR and Illumina RNA ligation methods, most of the varia-
tions tested did not alter the performance characteristics of the 
libraries (Supplementary Table 2 and Supplementary Figs. 2–4),  
an indication of the reproducibility of the methods. We did not 
directly evaluate the experimental features, such as PCR condi-
tions or adaptor sequences, that contributed to each method’s 
success (or lack thereof) because these may be complex. We note, 
however, that the amount of starting material did not correlate 
with library complexity (Supplementary Tables 2 and 4).

The dUTP protocol provided the most compelling overall balance 
across criteria, followed closely by the Illumina RNA ligation protocol 

(Supplementary Note 1). Currently, the dUTP protocol is compat-
ible with paired-end sequencing, whereas the present Illumina RNA 
ligation protocol is not. Paired-end sequencing increases the number 
of mappable reads (unique as pairs), and in higher eukaryotes  
provides substantial power in transcriptome reconstruction10,11. The 
3  split adaptor method14 excelled in measures critical for genome 
annotation, but was less well suited for expression profiling. Finally, 
our compendium and analysis pipeline, which is available online 
(http://www.broadinstitute.org/regev/rnaseqmethods/) and will be 
provided as a GenePattern module (http://www.broadinstitute.org/
cancer/software/genepattern/), are important resources and include 
a general benchmarking dataset and tools for testing the quality of 
future libraries.

METHODS
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturemethods/.

Accession code. Gene Expression Omnibus: GSE21739 (sequence 
and microarray data).

Note: Supplementary information is available on the Nature Methods website.
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ONLINE METHODS
Yeast RNA preparation. We grew S. cerevisiae strains Bb32 and 
BY4741 to mid-log phase. We used mid-log phase RNA from 
Bb32 for the original RNA ligation and SMART libraries; other 
libraries were made from a single sample of BY4741 RNA (the two 
strains are closely related and interchangeable for this study). We 
made one library (hybrid) from post–diauxic shift BY4741 RNA 
(slightly impacting its performance in expression profiling and 
not otherwise). We isolated total and poly(A)+ RNA and treated 
it with Turbo DNA-free (Ambion) as described4.

RNA ligation library. We created the library using a previously 
described method29 starting from 1.2 g of poly(A)+ RNA with 
these modifications. We fragmented RNA by incubation at 70 °C 
for 8 min in 1× fragmentation buffer (Ambion) and isolated 65–80- 
nucleotide RNA fragments from a gel. We reverse-transcribed 
RNA with SuperScript III (Invitrogen) at 55 °C and amplified the 
cDNA with Herculase (Stratagene) in the presence of 5% DMSO 
for 16 cycles of PCR followed by a cleanup with 1.8 volumes of 
AMPure beads (Agencourt) rather than gel purification.

Illumina RNA ligation library. The Illumina method used a 
preadenylated 3  adaptor, which enables the subsequent ligation 
of the 5  adaptor without an intermediate purification step. Our 
method has been modified from the version provided by Illumina. 
We created our libraries starting from 100 ng of poly(A)+ RNA as 
follows. We decapped RNA by adding 10 U of tobacco acid pyro-
phosphatase (Epicentre), 1 l of 10× buffer, 40 U of RNaseOut 
(Invitrogen) and water in a 10- l reaction, and incubated it at 
37 °C for 90 min, followed by extraction with 25:24:1 phenol:
chloroform:isoamyl alcohol (PCIA; Invitrogen), ethanol precipi-
tation and resuspension in 16 l of H2O. We fragmented decapped 
RNA by heating at 94 °C for 6 min in 1× fragmentation buffer 
(Affymetrix), followed by ethanol precipitation and resuspension 
in 16 l of H2O. We 3  dephosphorylated fragmented RNA by 
adding 2 l of 10× phosphatase buffer, 5 U of Antarctic phos-
phatase (New England Biolabs (NEB)) and 40 U of RNaseOut and 
incubating at 37 °C for 30 min followed by 5 min at 65 °C before 
chilling on ice. We 5  phosphorylated the RNA by adding 5 l of 
10× PNK buffer, 20 U of T4 polynucleotide kinase (NEB), 5 l of 
10 mM ATP (Epicentre), 40 U of RNaseOut, 17 l of water and 
incubating at 37 °C for 60 min. We adjusted the reaction volume 
to 100 l with water and cleaned up with the RNeasy MinElute kit 
(Qiagen) following the instructions of the manufacturer except 
400 l of 100% ethanol were used in step two. We concentrated 
RNA to 6 l by Vacufuge (Eppendorf), followed by mixing with 
1 l 1× v1.5 sRNA 3  adaptor (Illumina), incubating at 70 °C for  
2 min and chilling on ice for 2 min. We prepared the 3  ligation  
with this RNA adaptor mix, 1 l 10× T4 RNA ligase 2 trun-
cated reaction buffer, 0.8 l of 100 mM MgCl2 (Sigma), 20 U 
of RNaseOut, 300 U of T4 RNA ligase 2, truncated (NEB) and 
incubated at 22 °C for 1 h. We denatured 1 l of SRA 5  adap-
tor (Illumina) at 70 °C for 2 min and chilled it on ice before 
combining it with the 3  adaptor–ligated RNA, 1 l of 10 mM 
ATP and 1 l of T4 RNA ligase (Illumina) and incubating at  
20 °C for 1 h. We combined 12 l of this doubly adaptor-ligated 
RNA with 3 l of 0.2× SRA reverse transcription (RT) primer 
(Illumina), followed by incubation at 70 °C for 2 min, and chilling  
on ice. We synthesized single-stranded cDNA with this 

RNA primer mix by adding 6 l 5× first-strand buffer, 6 l 
100 mM DTT, 1.5 l 12.5 mM dNTPs, 600 U SuperScript III  
and 30 U SUPERase-In (Ambion) and incubating for 1 h at  
55 °C. We divided the cDNA into two aliquots that we processed 
with different size selection methods yielding libraries with dif-
fering insert lengths. In the first method, we mixed two-thirds of 
the cDNA with 5 U RNase H (NEB), incubated at 37 °C for 1 h and 
75 °C for 15 min, PCIA extracted, ethanol precipitated and resus-
pended in 10 l H2O. We selected single-stranded cDNA rang-
ing in size from 175 to 225 nt on a Criterion 10% TBE-urea gel 
(Bio-Rad). We crushed the gel slice and eluted with 250 l 0.3 M  
NaCl by rotating at room temperature (20–23 °C) for over 4 h. We 
filtered the crushed gel slice and buffer mixture through a Spin-X  
cellulose acetate filter (Corning) by centrifugation at 16,000g 
for 3 min. We ethanol-precipitated the eluate and resuspended 
it in 10 l RNase-free water. We prepared a 50 l PCR with 5 l 
water, 25 l 2× Phusion High-Fidelity Master Mix with GC buffer 
(NEB), 13 l 5 M betaine (Sigma), 1 l each primer GX1.0 and 2.0 
(Illumina) and 5 l size-selected cDNA. Thermocycling condi-
tions were: 30 s at 98 °C, 14 cycles of 98 °C for 10 s, 60 °C for 30 s,  
and 72 °C for 15 s, followed by 10 min at 72 °C. We removed PCR 
primers using 1.8 volumes of AMPure beads. This generated a 
cDNA library ranging in size from 180 to 240 base pairs (bp) 
(insert size of 110–170 bp). In the second method (SPRI), we used 
one-sixth of the cDNA without size selection in a 50 l PCR pre-
pared as in the first method. We purified the PCR product twice 
with 1.3 volumes of AMPure beads to generate a library ranging 
in size from 120 to 250 bp (insert size of 50–180 bp).

SMART library. We adapted the SMART method30 developed for 
SOLiD32 to Illumina Genome Analzyer sequencing. In our method, 
reverse transcriptase–primed cDNA synthesis with an oligonucle-
otide comprised of an Illumina adaptor sequence 5  of a random 
hexamer, added three nontemplate cytosine nucleotides at the  
3  end of the cDNA, followed by template switching to a second 
oligonucleotide containing a second Illumina adaptor sequence 
5  of three guanine ribonucleotides. Specifically, we created the 
SMART library starting from 100 ng of poly(A)+ RNA as follows. 
We fragmented RNA by heating at 98 °C for 40 min in 0.2 mM 
sodium citrate, pH 6.4 (Ambion), followed by concentrating it 
to 3.5 l, mixing with 1 l 2 M SMART tagged random primer, 
incubating at 70 °C for 10 min and chilling on ice for 2 min. 
(Sequences of all custom primers used in this study are listed in 
Supplementary Table 5.) We synthesized first-strand cDNA from 
this RNA primer mix by adding 2 l 5× buffer, 1 l 20 mM DTT, 
0.5 l 10 mM dNTPs, 50 U SMARTScribe reverse transcriptase 
(Clontech), and 10 U SUPERase-In and incubating at room tem-
perature for 10 min followed by 45 min at 42 °C. We denatured 
1 l 10 M 5  SMART oligo at 70 °C for 5 min and added it to 
the cDNA synthesis reaction, which we then incubated at 42 °C 
for another 15 min and chilled on ice. We cleaned up the cDNA 
using 1× volume of AMPure beads and eluted with 20 l of elu-
tion buffer (Qiagen). We prepared a 160 l PCR with 96 l water, 
16 l 10× HF 2 PCR buffer, 16 l 10× HF 2 dNTP mix, 6.4 l  
25 M primer PE 1.0 (Illumina), 6.4 l 5 M SMART reverse 
primer, 3.2 l 50× Advantage-HF 2 polymerase mix (Clontech) 
and 16 l cDNA. Thermocycling conditions were: 5 min at 94 °C, 
19 cycles of 94 °C for 15 s and 68 °C for 30 s. We PCIA extracted, 
ethanol precipitated and resuspended the PCR products in 10 l 
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H2O. We selected PCR products ranging in size from 220 to 420 bp 
on a 4% NuSieve 3:1 agarose (Lonza) TAE gel and purified them  
with the MinElute Gel Extraction kit (Qiagen).

SMART-RNA ligation ‘hybrid’ library. The SMART–RNA ligation 
(‘hybrid’) library combined ligation of an RNA adaptor to the 3  end 
of fragmented RNA with SMART’s template switching to attach a 
second adaptor at the 3  end of the cDNA. We created the library 
starting from 500 ng poly(A)+ RNA as follows. We fragmented RNA 
as described for the SMART library and dephosphorylated it with 
1.5 l 10× buffer 3 (NEB), 15 U calf intestinal alkaline phosphatase 
(NEB), 40 U RNaseOut and water in a final volume of 15 l for  
1 h at 37 °C and then chilled it on ice. We PCIA extracted, ethanol 
precipitated and resuspended this RNA in 5 l H2O. We denatured 
this RNA and 1 l 4 M 3  RNA adaptor oligo at 70 °C for 2 min, 
chilled them on ice, combined them with 40 U RNaseOut, 1 l 
100% DMSO (NEB), 10 U T4 RNA ligase (Promega), and 1 l 
10× T4 RNA ligase buffer, and incubated for 6 h at 20 °C and then  
4 h at 4 °C. We cleaned up adaptor-ligated RNA using 1.8 volumes 
of RNAClean beads (Agencourt) and eluted with 10 l water. We 
repeated this process to minimize the amount of unincorporated 
RNA adaptor oligos. We used half of this RNA for cDNA synthesis 
as described for the SMART library, except we used 1 l 10 M 
Hybrid reverse transcription primer in the reverse transcription 
reaction for 45 min at 42 °C before adding the 5  Hybrid oligo. 
We degraded RNA by adding 2.5 U RNase H, 1.5 l 10× RNase 
H buffer, 3 l water and incubating at 37 °C for 1 h. We PCIA 
extracted, ethanol precipitated and resuspended the cDNA in 6 l 
H2O. We selected single stranded cDNA ranging in size from 300 
to 500 nt on a Criterion 5% TBE-Urea gel and eluted it as described 
for the Illumina RNA ligation library. We prepared a 125 l PCR 
with 2.5 l water, 62.5 l 2× Phusion High-Fidelity Master Mix with 
GC buffer, 50 l 5 M betaine, 2.5 l each 25 M Hybrid forward 
and Hybrid reverse primers and 5 l size-selected cDNA. Thermo-
cycling conditions were: 30 s at 98 °C, 5 cycles of 98 °C for 10 s,  
50 °C for 30 s and 72 °C for 30 s, 13 cycles of 98 °C for 10 s, 65 °C 
for 30 s and 72 °C for 30 s, followed by 5 min at 72 °C. We removed 
PCR primers using 1.8 volumes of AMPure beads.

NNSR library. We modified the original NSR method31, which 
creates a strand-specific library, by replacing the ‘not so random’ 
primers for cDNA synthesis with random (or ‘not not so random’) 
primers. The NNSR method used two different primers, each 
comprised of a different adaptor sequence and random hexamers,  
for first- and second-strand cDNA synthesis. We created the 
NNSR library starting from 250 ng of poly(A)+ RNA. We con-
centrated RNA to 5 l, mixed it with 2 l of 100 M tagged first-
strand NNSR primers, incubated them at 65 °C for 5 min and 
placed them on ice. We synthesized first-strand cDNA with this 
RNA primer mix by adding 4 l of 5× first-strand buffer, 2 l of 
100 mM DTT, 1 l of 10 mM dNTPs, 4 g actinomycin D (USB), 
200 U SuperScript III and 20 U SUPERase-In and incubating at 
45 °C for 30 min followed by 15 min at 70 °C. We PCIA extracted 
twice, ethanol precipitated and resuspended first-strand cDNA 
in 10 l H2O. We treated it with RNase H in 1× RNase H buffer at 
37 °C for 20 min followed by 15 min at 75 °C, clean up using 1.8  
volumes of RNAClean beads and elution with 30 l water. We 
synthesized second-strand cDNA in a 100 l reaction by adding  
10 l 10× buffer 2 (NEB), 5 l 10 mM dNTPs, 20 U Klenow 

Fragment (3  to 5  exo−; NEB), 10 l of 100 M tagged second-strand  
NNSR primers and water and incubating at 37 °C for 30 min. 
We purified the cDNA with 1.8 volumes of AMPure beads. We  
prepared a 50 l PCR with 9.5 l water, 10 l of 5× reaction buffer 2,  
2.5 l of 10 mM dNTP mix, 5 l of 25 mM MgCl2, 5 l of each 
10 M NNSR forward and NNSR reverse primers, 0.5 l of 
ExpandPLUS enzyme (Roche) and 12.5 l cleaned up cDNA. 
Thermo-cycling conditions were: 2 min at 94 °C, two cycles of 94 °C  
for 10 s, 40 °C for 2 min and 72 °C for 1 min; eight cycles of 94 °C for  
10 s, 60 °C for 30 s and 72 °C for 1 min; four cycles of 94 °C for  
15 s, 60 °C for 30 s and 72 °C for 1 min with an additional 10 s 
added at each cycle; 72 °C for 5 min. We purified PCR products 
using 1.8 volumes of AMPure beads. We selected PCR products 
ranging in size from 325 to 525 bp on a Criterion 10% TBE gel and 
eluted them as described for the Illumina RNA ligation library.

We made a second NNSR library in parallel without actino-
mycin D.

Bisulfite libraries. We created the ‘H’ and ‘S’ bisulfite libraries 
using two previously described methods15,16, respectively, starting 
from 1 g of poly(A)+ RNA with the following modifications. The 
S library bisulfite reaction followed the 6× cycles for human 28S 
RNA treatment16 and was ethanol precipitated before and after 
desulfonation. We cleaned up the H library bisulfite reaction with 
an Amicon Ultra-15 3k MWCO filter (Millipore) centrifuged at 
4,000g at 25 °C for 50 min. In subsequent steps we followed a pre-
viously published procedure15, except as noted. We synthesized 
first-strand cDNAs from 100 ng of bisulfite-treated poly(A)+ RNA 
with 1.5 g ‘random octamer’ mixture, prepared as described15, 
in a 40 l reaction for 10 min at 25 °C followed by 60 min at  
55 °C. We synthesized second-strand cDNA with 5× second-strand 
buffer (Invitrogen) in a 300 l reaction. Because bisulfite treatment 
fragmented the RNA (data not shown), it was not necessary to 
fragment the cDNA. We prepared a paired-end library for Illumina 
sequencing as for the dUTP library, except that we gel-purified the 
final PCR products with an insert size of 160–300 bp.

dUTP library. We created the dUTP second strand library start-
ing from 200 ng of poly(A)+ RNA using a previously described 
method13 with the following modifications. All reagents were 
from Invitrogen except as noted. We fragmented RNA as 
described for the SMART library, concentrated it to 5 l, mixing 
with 3 g random hexamers, followed by incubation at 70 °C for 
10 min and chilling on ice. We synthesized first-strand cDNA 
with this RNA primer mix by adding 4 l 5× first-strand buffer, 
2 l 100 mM DTT, 1 l 10 mM dNTPs, 4 g of actinomycin D, 
200 U SuperScript III and 20 U SUPERase-In, incubating at room 
temperature for 10 min followed by 1 h at 55 °C. We cleaned up 
first-strand cDNA by PCIA extraction twice, ethanol precipitation 
with 0.1 volumes 5 M ammonium acetate to remove dNTPs and 
resuspension in 104 l H2O. We synthesized second-strand cDNA 
by adding 4 l of 5× first-strand buffer, 2 l of 100 mM DTT,  
4 l of 10 mM dNTPs with dTTP replaced by dUTP (Sigma), 30 l  
of 5× second-strand buffer, 40 U of Escherichia coli DNA polymer-
ase, 10 U of E. coli DNA ligase and 2 U of E. coli RNase H, and 
incubating at 16 °C for 2 h. We prepared a paired-end library for 
Illumina sequencing according to the instructions provided, with 
the following modifications. First, we ligated five times less adaptor  
mix to the cDNAs. Second, we incubated 1 U USER (NEB) with 
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180 to 480 bp size-selected, adaptor-ligated cDNA at 37 °C for  
15 min followed by 5 min at 95 °C before PCR. Third, we per-
formed PCR with Phusion High-Fidelity DNA polymerase with 
GC buffer and 2 M betaine. Fourth, we removed PCR primers 
using 1.8 volumes of AMPure beads.

In addition, we made a second cDNA library in parallel with 
2.7 g random hexamers plus 1.1 g anchored oligo(dT)20 
(Invitrogen) in the first-strand synthesis.

‘Control’ (non–strand-specific) library. We prepared a control 
library that used dTTP instead of dUTP for second-strand cDNA 
synthesis at the same time as the dUTP library. In addition, we 
made a second control cDNA library in parallel with 2.7 g of 
random hexamers plus 1.1 g of anchored oligo(dT)20 in the first-
strand synthesis.

Illumina sequencing. We sequenced each of the cDNA librar-
ies with an Illumina Genome Analyzer II (one or two lanes of 76 
base reads) using the standard SBS3 and SBS8 sequencing prim-
ers (Illumina), except as noted below. We sequenced the SMART 
library with the standard SBS3 primer for the first read and the  
custom SBS11 primer for the second read; both reads were  
51 bases. We sequenced the RNA ligation and Illumina RNA liga-
tion libraries with the small RNA sequencing primer (Illumina). 
The NNSR, SMART and Hybrid libraries have a short, identical 
sequence at the start of every read that leads to ‘monotemplate’ 
issues during cluster image processing (Supplementary Note 2).

Library read mapping. For SMART, Hybrid and NNSR libraries, 
we trimmed reads before mapping, to remove specific adaptor-
derived bases expected at the start of the read. We mapped reads 
using Arachne17. We mapped reads in single end libraries uniquely, 
allowing up to four mismatches. We first mapped reads in paired-
end libraries non-uniquely allowing up to four mismatches and 
then searched for unique pairing of the non-unique read mappings 
(a single pair of mappings on the same chromosome, up to 500 bp  
apart, with reads on opposite strands). For the bisulfite libraries, 
we first converted each ‘C’ in the genome to ‘T’, resulting in two 
pseudo-genomes (one per strand), to which the reads were mapped 
(a unique read mapped to a single location in exactly one of those 
pseudo genomes).

Read sampling and trimming. We sampled 2.5 million mapped 
read ‘starts’ from the aligned reads of each library, with the excep-
tion of the SMART and Bisulfite ‘H’ libraries where we used all 
reads (~0.9 million and 2.1 million reads, respectively), owing 
to their repeated low yields. (Resampling these libraries to  
2.5 million did not change the results substantially, data not 
shown.) As the libraries have various read lengths, we used only 
the first 36 bases of each mapped read (the shortest fragment 
length in our compendium). We used the sampled 36 base 
extended coverage for all subsequent method comparison.

Library complexity. We calculated the fraction of reads starting 
at a distinct (unique) genomic location. In paired libraries we 
measured the fraction of pairs whose combination of start and 
end locations was unique, as a proxy for the number of unique 
cDNAs loaded on the sequencer.

Strand specificity. We used the known annotation from 
(Saccharomyces Genome Database (SGD), http://www. 
yeastgenome.org/; downloaded in November 2007), and pub-
lished estimates of UTR lengths18, or when absent an estimation 
of 100 bp for each of the UTRs. We considered only high-quality 
annotations (‘verified’ or ‘uncharacterized’; SGD) and excluded 
all regions with annotated overlapping transcripts (at UTRs or 
ORFs) and all genes designated as ‘dubious’. We calculated the 
number of reads that map to the sense and opposite strand of 
known transcripts.

Evenness of coverage. We used the known annotation from SGD, 
divided the length of each gene into 100 bins of equal length and calcu-
lated the relative coverage in each bin compared to the entire gene. We 
averaged across all ‘verified’ and ‘uncharacterized’ annotated genes.

Continuity of coverage. We measured for each gene the fraction 
of the gene’s total length that had no read coverage. We plotted 
these values against the relative expression of the gene based on 
a ‘pooled’ library (below) and calculated in each plot the Lowess 
fit of these data (Matlab version 2009b; MathWorks). For each 
gene, we also counted the number of segments of length 5 bp or 
longer that had no read coverage. We averaged these measure-
ments across all genes, weighting by the relative expression of 
each gene.

Comparison to S. cerevisiae annotation of 5ʹ and 3ʹ ends. 
Conservatively, we used known annotation of verified and 
uncharacterized genes (SGD). For each end, we measured the 
number of genes where a window of ten bp around the translation 
start and end sites was fully covered by aligned reads.

Expression. We used three standards: microarray data, the 
‘control’ library and a ‘pooled’ library with 2.5 million sampled 
mapped reads from each of nine strand-specific libraries (RNA 
ligation, Illumina RNA ligation, SMART, Hybrid, NNSR, bisulfite, 
our dUTP, published dUTP and 3  split adaptor). For each library, 
we calculated the relative expression level of known genes (SGD) 
by calculating the mean coverage over the coding region length, 
and normalizing it to a distribution over all genes4. We compared  
each library to each reference using the Pearson correlation  
coefficient and the r.m.s. error measures. We also generated  
scatter, Q-Q and MA plots for each library-reference pair.

MA and Q-Q plots. Both plots compare two sets of data (D1, D2). 
An MA plot displays the log2(D1) + log2(D2) versus log2(D1) − 
log2(D2). If the samples are very similar, they should be close to 
the y = 0 axis regardless of the x-axis position. A Q-Q plot dis-
plays a quantile-quantile plot of D1 (x axis) and D2 (y axis). If the 
samples were drawn from the same distribution, the plot should 
be a straight line.

Microarray data. Microarray data preparation methods are 
described in Supplementary Note 3.

32. Cloonan, N. et al. Stem cell transcriptome profiling via massive-scale 
mRNA sequencing. Nat. Methods 5, 613–619 (2008).
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Strand-specific RNA sequencing reveals extensive
regulated long antisense transcripts that are
conserved across yeast species
Moran Yassour1,2,3, Jenna Pfiffner1†, Joshua Z Levin1†, Xian Adiconis1, Andreas Gnirke1, Chad Nusbaum1,
Dawn-Anne Thompson1*, Nir Friedman3,4*, Aviv Regev1,2*

Abstract

Background: Recent studies in budding yeast have shown that antisense transcription occurs at many loci.
However, the functional role of antisense transcripts has been demonstrated only in a few cases and it has been
suggested that most antisense transcripts may result from promiscuous bi-directional transcription in a dense
genome.

Results: Here, we use strand-specific RNA sequencing to study anti-sense transcription in Saccharomyces cerevisiae.
We detect 1,103 putative antisense transcripts expressed in mid-log phase growth, ranging from 39 short
transcripts covering only the 3’ UTR of sense genes to 145 long transcripts covering the entire sense open reading
frame. Many of these antisense transcripts overlap sense genes that are repressed in mid-log phase and are
important in stationary phase, stress response, or meiosis. We validate the differential regulation of 67 antisense
transcripts and their sense targets in relevant conditions, including nutrient limitation and environmental stresses.
Moreover, we show that several antisense transcripts and, in some cases, their differential expression have been
conserved across five species of yeast spanning 150 million years of evolution. Divergence in the regulation of
antisense transcripts to two respiratory genes coincides with the evolution of respiro-fermentation.

Conclusions: Our work provides support for a global and conserved role for antisense transcription in yeast gene
regulation.

Background
Antisense transcription plays an important role in gene
regulation from bacteria to humans. While the role of
antisense transcripts is increasingly studied in metazoans
[1], less is known about its relevance for gene regulation
in the yeast Saccharomyces cerevisiae, a key model for
eukaryotic gene regulation. Recent genomic studies
using tiling microarrays showed evidence of stable anti-
sense transcription in S. cerevisiae [2,3] and Schizosac-
charomyces pombe [4,5].

It is unclear how broad the role of antisense transcrip-
tion is and what key functional processes in yeast it
affects. A few functional antisense transcripts have been
implicated in the control of several key genes, including
the meiosis regulator gene IME4 [6], the phosphate
metabolism gene PHO84 [7], the galactose metabolism
gene GAL10 [8], and the inositol phosphate biosynthetic
gene KCS1 [9]. In contrast, genome-scale analysis in
yeast suggested that antisense transcripts largely arise
from bi-directional, possibly promiscuous, transcription
from nucleosome free regions in promoters or 3′ UTRs
of upstream protein coding genes [2,3]. The ability to
massively sequence cDNA libraries (RNA-seq) can facili-
tate the discovery of novel transcripts [10-12], but most
studies have not distinguished the transcribed strand.
Here, we used massively parallel sequencing to

sequence a strand-specific cDNA library from RNA iso-
lated from S. cerevisiae cells at mid-log phase. We
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found 1,103 putative antisense transcripts in those cells,
ranging from short ones that cover only the 3′ UTR of
sense genes to over a hundred long ones that cover the
entire sense ORF. Many of the putative sense targets
encode proteins with important roles in stationary
phase, stress responses, or meiosis. We validated the dif-
ferential regulation of 67 antisense transcripts and their
sense targets in conditions ranging from nutrient limita-
tion to stress, and show that the exosome component
Rrp6 affects their levels, but that the histone deacetylase
Hda2 does not. Furthermore, for a few examples we
show that antisense transcripts and their differential reg-
ulation are conserved over 150 million years across five
yeast species. Our results support a potential conserved
role for antisense transcription in yeast gene regulation.

Results
Strand-specific RNA-seq of S. cerevisiae cells
To identify antisense transcripts in yeast, we used mas-
sively parallel sequencing (Illumina) to sequence a
strand-specific cDNA library from S. cerevisiae during
mid-log growth in rich media. The approach we used
[13] relies on the incorporation of deoxy-UTP during
the second strand synthesis, allowing subsequent selec-
tive destruction of this strand (Materials and methods).
Our sequencing yielded 9.22 million 76-nucleotide
paired-end reads that map to unique positions in the
genome.
Of the reads that map to regions with a known anno-

tation for uni-directional transcription (from the Sac-
charomyces Genome Database (SGD) [14]), only 0.62%
were mapped to the opposite (antisense) strand, demon-
strating the strand-specificity of our library [15] (Materi-
als and methods). We next combined these reads to
define consecutive regions of strand-specific transcrip-
tion (Materials and methods), and found 8,778 units,
covering 4,944 of the 5,501 (90%) genes expressed in
this condition (top 85% [12]) at the correct orientation,
for at least 80% of the length of each gene (Materials
and methods; Additional files 1 and 2).

Identification of 1,103 antisense transcripts that vary in
sense coverage from the 3′ UTR to the entire ORF
We found 1,103 putative units that have an antisense
orientation relative to annotated transcripts and cover at
least 25% of a known transcript on the opposite strand,
using published UTR estimates [2] (Materials and meth-
ods; Additional file 1). While antisense reads are only a
small minority (0.62%) of the total reads, they aggregate
in a relatively small number of loci, with 62% of the
antisense reads concentrated in the 1,103 units we
defined. The remaining 38% are mostly isolated reads
scattered across the genome (Figure S1 in Additional
file 3).

We observe a range of antisense unit lengths (Figure
S2 in Additional file 3). At one extreme are 39 units
that cover at least 25% of the transcript but none of the
ORF, most commonly at the 3′ UTR (for example,
Unit3689, a putative antisense transcript to NOP10; Fig-
ure 1a). Other units cover a substantial portion of the
sense ORF. For example, 438 units overlap with at least
50% of the sense ORF, and 145 units cover the entire
sense ORF (for example, Unit4966, a putative antisense
to the MBR1 gene; Figure 1b). In some cases a single
sense gene may be covered by more than one antisense
unit, most likely due to low antisense expression levels
that result in gaps in coverage (for example, Unit8753,
Unit8754, Unit8756 and Unit8758 all opposite to the
OPT2 gene; Figure S3 in Additional file 3). To avoid
spurious or ‘gapped’ calls by our automatic method, we
manually inspected each of the units, and focused on
the 402 units that passed manual inspection and overlap
at least 75% of a sense ORF (Materials and methods).
The 402 antisense units are supported by several lines

of evidence. First, comparing the units to published data
from strand-specific tiling arrays [2], we find that 143 of
our 402 units (36%) are at least 80% covered by stable
antisense units as previously defined [2], while 224 units
were not detected at all on tiling arrays (Additional file
1; Materials and methods). Finally, 336 of the 402 units
are supported by an independent RNA-seq experiment
we conducted using an RNA ligation protocol [16] for
strand-specific library preparation (Materials and meth-
ods) [15]. The lower number of units detected using the
independent library reflects the less continuous nature
of the data collected by the alternative protocol [15].

Antisense units are unlikely to result solely from
leaky transcription
We next assessed the previously suggested possibility
[2,17] that antisense transcription is a consequence of
leaky transcriptional regulation, through either untermi-
nated transcription, bi-directional transcription initiation
from promoters, or transcription from potential nucleo-
some-free regions (NFRs) in 3′ UTRs. We found that 48
and 27 units might reside within a long 3′ or 5′ UTR,
respectively. Of the remaining 333 antisense units, 149
appear to share the (divergent) promoter of a known
neighbor transcript, consistent with previous reports
[2,3]. An additional 43 units may be transcribed from
potential NFRs in the 3′ UTR of an adjacent transcript
[18]. The remaining 141 units (35%) cannot be
accounted for by transcription from a known promoter
or 3′ UTR (when considering 400-bp margins; Figure S4
in Additional file 3).
We compared the change in expression of antisense

units and such neighboring genes between cells grown
in rich media containing glucose (yeast peptone dextrose
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Figure 1 Strand-specific RNA-seq identifies 1,103 antisense units associated with stationary phase, stress, and meiosis genes in
S. cerevisiae. (a) Typical short antisense (Unit3689, antisense to NOP10). Shown are reads mapped from a standard cDNA sequencing library [15]
(yellow), and from the strand-specific library prepared and run side-by-side on the same flow cell (green: forward reads above, reverse reads
below). All coverage tracks were normalized to the total number of reads mapped, and are shown up to a threshold of 3 × 10-8 of total
mapped reads (genome-wide). Units were called from the strand-specific library (blue units, known genes; orange, putative antisense), and are
shown along with the manually curated units (red) and the known gene annotations from the SGD (gray). (b) Typical long antisense
(ManualUnit225, antisense to MBR1). Tracks are as in (a). The figures are shown using the Integrative Genome Viewer [36].
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(YPD)) and ethanol (yeast peptone ethanol (YPE)) as the
main carbon source [2]. We reasoned that ‘leaky tran-
scription’ would result in strong positive correlation in
expression between the antisense transcript and the
neighboring gene. However, we found a very low corre-
lation (R2 = 0.07; Figure S5 in Additional file 3), sug-
gesting only weak co-regulation through leaky
transcription, from divergent promoters or 3′ NFRs, if at
all. Thus, even among the units that could hypotheti-
cally arise from leaky transcription, there is little if any
evidence of such events.
We also examined the hypothesis that antisense is

transcribed to prevent the neighboring gene from run-
through transcription. Of the 402 units, 72 (18%) end
relatively close (< 200 bp) to the 3’ ends of known genes
(for example, Unit3689 ends close to the NOP10 gene
shown in Figure 1a). On average, the 3′ UTRs of these
72 genes are shorter than those of other genes (P <
0.0058, Wilcoxon test; Figure S6 in Additional file 3).
This minority of units could thus potentially play a role
in curbing runthrough transcription.

Stress, meiosis and nutrient limitation genes are
associated with antisense transcripts at mid-log phase
To explore the potential function of the antisense units,
we examined the known function and expression pat-
tern of their associated sense transcripts. We found that
the set of ORFs with 75% or more antisense coverage is
enriched for genes induced after the diauxic shift (P < 6
× 10-14) or in stationary phase (P < 2 × 10-10), during
stress (P < 2 × 10-27), and in some meiosis and sporula-
tion experiments (for example, 85 of 805 genes induced
at 8 h in a sporulation time course, P < 3 × 10-6), and
include multiple central genes in these processes. For
example, the genes encoding the key meiosis proteins
IME4, NDT80, REC102, GAS2, SPS19, SLZ1, RIM9, and
SMK1 are all associated with long antisense transcrip-
tion. This is consistent with previous studies in S.
pombe [4] showing a preponderance of antisense tran-
scription in genes induced during meiosis. Long anti-
sense is also found in many key respiration and
mitochondrial genes, including HAP3, COX8, CYB2,
CYC3, COX5B, MMF1, NCA3, CYC1, MBR1, PET10,
COX12, and ATP14. Genes from other processes
repressed during mid-log phase are also associated with
long antisense transcripts. Notably, these include at least
five members of the PHO regulon (VTC1, PHO5,
PHM8, ICS2, PHO3) and three genes from the GAL reg-
ulon (GAL4, GAL10, GAL2). This suggests that antisense
regulation may be prevalent across these regulons rather
than at single target genes (as found in [6-8]). Further-
more, the expression of 149 of the antisense transcripts
is inversely related to that of their sense targets, as mea-
sured on tiling arrays [2] in several conditions (glucose

versus ethanol, versus galactose, and in ∆rrp6; Figure S7
in Additional file 3). Certain key genes that are highly
expressed in mid-log phase are also associated with
detectable transcription of long antisense units. These
include some of the ribosomal protein genes (for exam-
ple, RPS26A, RPS20), glycolytic enzymes (for example,
CDC19, PGK1), and cell cycle regulators (for example,
PCL2, APC11, ASK1). Nevertheless, these observations
suggest that antisense transcription may be regulated in
a condition-specific manner in S. cerevisiae and may be
involved in the repression of stress, stationary phase and
meiosis genes in rich growth conditions.

Differential regulation of antisense-sense pairs in
nutrient limitation and stress
To test this hypothesis, we first experimentally mea-
sured the existence and differential expression of nine
pairs of sense and antisense transcripts in S. cerevisiae,
where the sense gene was known to be induced and
important in stress or stationary phase states. We used
strand-specific RT-PCR (Materials and methods) fol-
lowed by sequencing to check for the presence of each
sense and antisense transcript in mid-log (rich media),
and found that all of the nine tested antisense units
were present as expected (Additional file 4). Next, we
used strand-specific quantitative real-time PCR (qRT-
PCR; Materials and methods) to quantify the differential
expression of six sense and antisense transcript pairs
between mid-log and early stationary phase. We found
that all six of the pairs were differentially expressed,
with induction of the sense accompanied by repression
of the antisense (Figure 2a; Additional file 5). Third, we
devised a novel assay based on the nCounter technology
for sensitive multiplex measurement of mRNAs [19,20]
(Materials and methods) to measure the absolute level
of expression of the nine pairs across five conditions,
including mid-log, early stationary phase, stationary
phase, high salt and heat shock. We found that the gene
pairs exhibited inverse transcription patterns across all
the tested conditions (Figure 2b). The differential
expression we observed is consistent with antisense
interference with sense expression (Figure 2b; Additional
file 6), and with the known function and regulation of
the sense genes. These included proteins with roles in
respiration and mitochondria (PET10 and MBR1
[21,22]), repression of ribosomal protein gene expression
in stress and poor nutrients (CRF1 [23]), and the
response to caloric restriction (CTA1 [24]). Thus, differ-
entially regulated antisense transcription may play a role
in the distinction between mid-log non-stress growth
and stationary phase and stress conditions in S.
cerevisiae.
Finally, to test the generality of these suggestive pat-
terns, we expanded the nCounter assay to measure the
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Figure 2 Quantitative expression measurements of putative antisense units and the corresponding sense genes in S. cerevisiae.
(a) Strand-specific qRT-PCR measurements of six pairs of known sense genes and their putative antisense units in comparing mid-log and early
stationary phase (the y-axis shows the log2 ratio of expression in early stationary phase versus mid-log). Error bars indicate the standard deviation
between biological replicates and different primers. (b) nCounter [20] measurements of nine representative putative antisense units, comparing
mid-log to early stationary phase, stationary phase, heat shock and salt stress (the y-axis is as in (a) for the examined condition). Error bars
indicate the standard deviation between biological replicates. (c) nCounter measurement for 67 tested sense-antisense pairs in early stationary
phase (left) and heat shock (right), each relative to a mid-log (no stress) control. The columns marked ‘S’ and ‘A’ represent the sense and
antisense change, respectively. Red, induced; green, repressed; black, no change. The names of genes highlighted in the main text are shown
in red.
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expression of 67 sense-antisense pairs in log-phase, early
stationary phase, and after 15 minutes under heat shock
conditions (Figure 2c; Additional file 6). We found 25
pairs where the sense was induced while the antisense
was repressed in either early stationary phase or heat
shock (12 in early stationary phase, 21 in heat shock, 8
in both), and 12 pairs where the sense was repressed
while the antisense was induced (6 in early stationary
phase, 8 in heat shock, 2 in both). Notably, 17 of the 25
pairs with induced sense and repressed antisense in
early stationary phase (relative to mid-log) involved
sense genes important in respiration, mitochondrial
function, alternative carbon source metabolism and star-
vation response (for example, PET10, MBR1, FMP46,
POT1, MOH1, TKL2, ICL1, CTA1). Conversely, four of
the six pairs with the opposite pattern involved sense
genes with key roles in glycolysis and fermentation (for
example, GPM1, PGK1). Many of the pairs with induced
sense and repressed antisense following heat shock over-
lapped with those responsive to early stationary phase
(consistent with known metabolic changes under stress
[25]). Furthermore, they also included four genes known
to be important under environmental stresses (the regu-
lators CRF1 and MRK1, and the effectors HSP31 and
GRE2). Thus, antisense regulation may play a regulatory
role at coordinating the major metabolic changes in the
diauxic shift and early stationary phase, and some of the
changes in the environmental stress response [21-24].

The exosome component Rrp6 affects antisense levels,
but the histone deacetylase Hda2 does not
To explore the mechanistic regulation of antisense tran-
scription, we measured the expression of the 67 pairs of
sense and antisense units using the nCounter assay in
strains deleted for the exosome component RRP6
(∆rrp6), the histone deacetylase HDA2 (∆hda2), or both
(∆rrp6∆hda2). Previous studies [2,7] have suggested that
∆rrp6 increases the levels of antisense transcription in
the PHO84 locus, and that Hda2 is required for mediat-
ing the effect of antisense transcription on the sense
transcripts in this locus. If these findings apply more
broadly, we expect higher levels of antisense transcripts
in ∆rrp6, and a change in the relative levels of sense to
antisense in either the ∆hda2 or ∆rrp6∆hda2 strains.
We found increased transcription of the antisense

units in the ∆rrp6 mutant, with a mild reduction of the
sense transcripts (R = -0.36; Figure 3a,c; Figure S8a in
Additional file 3). This is consistent with regulation of
antisense transcript levels by the exosome, and with a
possible, albeit mild, effect of this increase in antisense
on reduction in the level of sense transcripts. We found
only a very mild, if any, effect on either sense or anti-
sense transcripts levels in ∆hda2 (Figure 3b; Figure S8b
in Additional file 3), suggesting that Hda2 plays at most

a very minor independent role in the regulation of our
transcripts. We also found no evidence for a synergistic
effect between the mechanisms, since transcript levels in
the double mutant were very close to those in ∆rrp6
(Figure S8c in Additional file 3). Finally, the differential
expression of the sense genes between conditions was
not substantially affected in any of these mutants (for
example, R > 0.93 in all conditions; Figure 3d; Figure S9
in Additional file 3), suggesting that relative regulation
itself was not compromised in any of these mutants.
This may be due to a comparable effect of the deletion
in all conditions. Thus, the mechanistic basis of sense-
antisense regulation involved Rrp6, but may be more
complex than that in the simple model suggested for
PHO84 [7].

Evolutionary conservation of six antisense transcripts and
their regulation in five species of yeast
Finally, we tested whether the presence and regulation
of antisense transcripts is conserved in five other species
of yeast. We reasoned that while the biochemical func-
tion and mechanistic basis of each antisense unit may
be distinct or complex, their conservation would provide
additional support for their functional and ancestral role
in gene regulation. We chose five species with diverse
lifestyles and a broad phylogenetic range spanning
approximately 150 million years (Figure 4). These
include three sensu stricto Saccharomyces species (S.
paradoxus, S. mikatae, S. bayanus), a more distant spe-
cies that diverged after the whole genome duplication
(WGD; S. castellii), and one species that diverged pre-
WGD (Kluyveromyces lactis). Importantly, post-WGD
species are known to follow a respiro-fermentative life-
style, repressing the expression of respiration genes (for
example, PET10) in mid-log phase, whereas pre-WGD
species follow a respirative lifestyle without such repres-
sion. We used conserved synteny and gene orthology of
S. cerevisiae loci [26,27] to identify orthologous regions
for candidate antisense transcription in the five species.
We focused on six of the units validated in S. cerevisiae
(PET10, MRK1, MBR1, CRF1, CTA1, MOH1), used
strand-specific RT-PCR and sequencing to validate the
presence of the orthologous sense and antisense tran-
scripts in each species in mid-log and early stationary
phase, and used strand-specific quantitative real-time
PCR to quantify transcript levels (Additional file 5).
We found that the tested antisense units are largely

conserved in the sensu stricto species, and less so at
increasing evolutionary distances. All six units were
detected in at least one species besides S. cerevisiae. Five
of the six units are present in sensu stricto Saccharo-
myces, and four are still observed in S. castellii and K.
lactis. The absence in K. lactis of an antisense transcript
to the PET10 gene, important for respiratory growth, is
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consistent with its respiratory lifestyle, and suggests that
antisense transcription in this gene may have appeared
after the whole genome duplication. We cannot rule out
the possibility, however, that other antisense units are
present in the K. lactis genome, or that the missing anti-
sense units are expressed under different conditions.
The anti-correlation between sense and antisense units

observed in S. cerevisiae is conserved in most post-
WGD species, but not in the pre-WGD K. lactis. The

differential expression of five sense-antisense pairs
(PET10, MRK1, MBR1, CRF1, CTA1) is conserved in at
least two out of three other sensu stricto species. The
more distant S. castellii shows less conservation of tran-
scriptional regulation, most prominently in the PET10
gene. In contrast, although we could detect four of the
antisense units in K. lactis, their differential expression
was not conserved. This is consistent with the lack of
repression of the corresponding sense gene in mid-log

Figure 3 Effect of Rrp6 and Hda2 on antisense transcript levels and sense-antisense regulation. (a,b) The distribution of changes in
expression levels (x-axis) for sense (blue) and antisense (orange) transcripts in the ∆rrp6 (a) and ∆hda2 (b) mutants compared to the wild type
(wt). In the ∆rrp6 mutant (a) there is a mild increase in antisense levels and decrease in sense levels. No such changes are observed in the ∆hda2
mutant (b). (c) Negative correlation between change in antisense transcript (y-axis) and in sense transcript (x-axis) in the ∆rrp6 mutant relative to
the wild-type strain. (d) Similarity in differential sense gene expression from mid-log to early stationary phase between the wild type (x-axis) and
the ∆rrp6 mutant (y-axis).
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K. lactis cultures. The absence of antisense (for two
genes) and the observed correlated (rather than anti-
correlated) regulation (for three others) in K. lactis may
reflect either the increased phylogenetic distance or may
be more directly related to the shift to a respiro-fermen-
tative lifestyle. In the latter case, either antisense tran-
scription or its regulatory pattern in those genes may
have evolved concomitantly with the emergence of fer-
mentative growth, and the repression of respiratory
genes, such as PET10 and MBR1. Further experiments
are needed to elucidate this relationship.

Discussion
In this study, we used strand-specific mRNA sequencing
to explore the extent of antisense transcription in yeast,
and found 1,103 putative antisense transcripts expressed
in mid-log phase in S. cerevisiae, ranging from 39 short
ones covering only the 3′ UTR of sense genes to 145
long ones covering the entire sense ORF. We focus on
402 long antisense units (each spanning over 75% of a
coding unit). In this category, our sequencing based
methodology allowed us to identify 224 new antisense
transcripts that, in previous studies based on tiling

microarrays [2], were either undetected or annotated as
long UTRs of neighboring genes.
What could be the role of such prevalent antisense

transcription? To date, functional studies have identified
a regulatory role for a few antisense transcripts [6-8],
whereas genome-wide analyses have suggested that anti-
sense transcripts may represent promiscuous leaky tran-
scription from NFRs at the promoter of a neighboring
gene or the 3′ UTR of the sense gene [2,3,28]. The
diversity of lengths in our 1,103 antisense units - ran-
ging from long antisense units covering entire ORFs to
shorter ones mostly at the 3′ UTR - suggests that there
may be more than a single underlying mechanism for
their formation and function.
Our results do not support promiscuous or aberrant

transcription as the primary cause of the observed anti-
sense transcripts. We find antisense transcription at
only 18% of the genes. Moreover, many of the units are
long and show robust sequence coverage, in contrast to
what we might expect in a noisy process. Finally, anti-
sense genes are only very weakly correlated to their
neighbors, inconsistent with leaky transcription from
divergent promoters or 3′ NFRs.

Figure 4 Conservation of the presence and regulation of antisense units in Hemiascomycota. Shown are the differential expression values
of antisense and sense units comparing mid-log and early stationary phase across S. cerevisiae and the five other species (red, higher in early
stationary phase; green, lower in early stationary phase; black, no change; hatched, no candidate orthologous contig; grey, no antisense
transcription detected in species). A phylogenetic tree of the species included in this study [27] is shown above (the star indicates the WGD).
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Characterizing the functional effect of each unit
requires delicate assays to disable the antisense unit,
without harming the sense gene, which have been suc-
cessfully performed only in a few examples [6-8]. We
therefore instead examined whether the changes in
expression of sense and antisense are consistent with a
regulatory function. We chose to focus on the long anti-
sense units because they exhibit strong signal in our
data, are less well-studied, are less likely to reflect noise,
and can be verified more rigorously.
We found that the sense transcripts corresponding to

longer antisense units are significantly enriched for key
processes in S. cerevisiae, including stress response, the
differential regulation of growth and stationary phase, and
possibly meiosis and sporulation. The high level of anti-
sense expression is consistent with the repression of these
processes in fast growing yeast, and suggests a potential
global function. Indeed, when we examined the relative
change in expression in sense and antisense units across
multiple conditions using three technologies (tiling arrays
[2], strand-specific qPCR, and nCounter measurements),
we found a strong and consistent anti-correlation between
sense genes and the corresponding antisense units. While
these results are consistent with regulatory function of
antisense units (for example, reduction of antisense tran-
scription leads to increased sense transcription), we cannot
rule out the possibility that anti-correlation can occur
without active regulation of the antisense transcript. For
example, it is possible that when a sense gene is repressed,
there is a relieved hindrance of antisense-transcription.
Notably, we found support for the role of Rrp6 in the reg-
ulation of antisense levels, resulting in an increase in anti-
sense levels in the ∆rrp6 mutant, and a concomitant,
albeit very mild, decrease in sense levels. We could not
demonstrate a general effect of Hda2 on the levels of
sense or antisense transcripts (either alone or together
with Rrp6), and - in all mutants - the differential expres-
sion of sense and antisense remained highly correlated to
the wild-type regulation. This suggests that it may be chal-
lenging to generalize the mechanisms shown for specific
transcripts (PHO84) to all antisense transcripts.
Independent support for a potential function is the

conservation of expression and regulation of six anti-
sense units tested across five species that have diverged
more than 150 million years ago, suggesting purifying
selection. Notably, previous studies in mammals have
shown that certain non-coding RNAs (that are not anti-
sense) can be conserved at the sequence level [17,29],
but the applicability of such analyses to antisense tran-
scripts that cover ORFs is limited, and hence experi-
mental data are needed to show conservation. We find
that both the presence and the regulation of antisense
transcripts are most diverged in the distant, pre-WGD
species K. lactis. This may reflect either the increased

phylogenetic distance per se, or an evolved role in regu-
lating respiration genes in post-WGD species. Another
possibility for the lack of conservation in expression or
absence of antisense in S. castellii and K. lactis may be
the presence of RNA interference in these species [30].
Further experiments will be needed to elucidate these
possibilities and characterize the full functional scope of
antisense transcription in yeasts.

Conclusions
Our results expand and strengthen the existing body of
evidence that antisense transcription is a substantial phe-
nomenon in yeast, and not solely a noisy by product of
imprecise transcription regulation. While the mechanism
and function of antisense transcription is still elusive, our
results indicate that antisense transcription is often con-
served and plays a regulatory role in the yeast transcrip-
tional response.

Materials and methods
Supplementary website
All tables, figures, raw sequenced reads, and a link to a
browser with the mapped reads appear on our supple-
mentary website [31].

Strains and growth conditions
Strains are listed in Table 1. Cultures were grown in the
following rich medium: yeast extract (1.5%), peptone
(1%), dextrose (2%), SC Amino Acid mix (Sunrise
Science - San Diego, CA, USA) 2 g/l, adenine 100 mg/l,
tryptophan 100 mg/l, uracil 100 mg/l, at 200 RPM in a
New Brunswick Scientific (Edison, NJ, USA) air-shaker.
The medium was chosen to minimize cross-species var-
iation in growth. Following the experimental treatments
described below, stressed and mock cultures were trans-
ferred to shaking water baths.
To generate strain RGV 69(rrp6∆::KANMX6, hda2∆::

NatMX4), strain RGV 71(rrp6∆::KANMX6) was trans-
formed with a PCR product constructed by using the
pAG25 containing the NatMX4 cassette using the fol-
lowing primers: GTAAAAGTATTTGGCTTCATTAG
TGTGTGAAAAATAAAGAAAATAGATACAATAC-
TATCGACGGTCGACGGATCCCCGGGTT and AAGA
AAGTATATAAAATCTCTCTATATTATACAGGC-
TACTTCTTTTAGGAAACGTCACATCGATGAATTC-
GAGCTCGTT [32]. Correct integration of this
construct was confirmed with the following: (5′ left) left
TGGCGTATATGGTTCATTGC; (5′ right) GTATGGG
CTAAATGTACGGG; (3′ left) left TGGCGTATATGGT
TCATTGC; (3′ right) GGTTGGAGAGGCAAATTGAG.

Heat shock
Overnight cultures of S. cerevisiae were grown in 650 ml
of media at 22°C to between 3 × 107 and 1 × 108 cell/
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ml, OD600 = 1.0. The overnight culture was split into
two 300 ml cultures and cells from each were collected
by removing the media via vacuum filtration (Millipore
- Billerica, MA, USA). The cell-containing filters were
re-suspended in pre-warmed media to either control
(22°C) or heat-shock temperatures (37°C). Density mea-
surements were taken approximately 1 minute after cells
were re-suspended to ensure that concentrations did not
change during the transfer from overnight media. We
harvested 12 ml of culture at 15 minutes and quenched
by adding to 30 ml liquid methanol at -40°C, which was
later removed by centrifugation at -9°C, and stored
these overnight at -80°C. Cell density measurements
were repeatedly taken every 5 to 15 minutes for the first
2 hours after treatment. Harvested cells were later
washed in RNase-free water and archived in RNAlater
(Ambion - Austin, TX, USA) for future preparations.
Cells were also harvested from cultures just before treat-
ment for use as controls.

Salt stress
Overnight cultures of S. cerevisiae (BB32) were grown in
600 ml of media at 30°C until reaching a final concen-
tration of 3 × 107 and 1 × 108 cell/ml. The culture was
split into two parallel cultures of 250 ml and sodium
chloride was added to one culture for a final concentra-
tion of 0.3 M NaCl. Cells were harvested by vacuum fil-
tration at 15 minutes after the addition of sodium
chloride and from cultures immediately before the addi-
tion of sodium chloride for use as controls (t = 0 min-
utes). Filters were placed in liquid nitrogen and stored
at -80°C and were later archived in RNAlater for future
use.

Diauxic shift
Overnight cultures for each species were grown to
saturation in 3 ml rich medium. From the 3 ml over-
night cultures, 300 ml of rich media was inoculated at
the OD600 corresponding to 1 × 106 cell/ml: S. cerevisiae
0.016, S. paradoxus 0.016, S. mikatae 0.023, S. bayanus

0.016, S. castellii 0.020, and K. lactis 0.024. The density
measurements were taken approximately 1 minute after
cells were re-suspended to ensure that concentrations
did not change during the transfer from overnight
media. Cells were harvested and quenched at a final
concentration of 60% methanol at the mid-log and early
stationary phase time points. Mid-log was taken at the
following OD600 values: S. cerevisiae, 0.35; S. paradoxus,
0.40; S. mikatae, 0.40; S. bayanus, 0.30; S. castellii, 0.35;
and K. lactis, 0.30. The early stationary phase time
points were taken 2 hours after the glucose levels
reached zero. Glucose levels were monitored hourly
using the YSI 2700 Select Bioanalyzer (YSI Life Sciences
- Yellow Springs, OH, USA). OD600 values for early sta-
tionary phase time points were: S. cerevisiae, 4.6; S.
paradoxus, 3.9; S. mikatae, 4.3; S. bayanus, 2.8; S. castel-
lii, 3.2; and K. lactis, 5.0. Harvested cells were later
washed in RNase-free water, archived in RNAlater
(Ambion) for future preparations, and frozen at -80°C.

Stationary phase
Stationary phase was done for S. cerevisiae (BB32) only.
This experiment was set up identically to the diauxic
shift, but samples were taken at mid-log, and 5-day time
points. The 5-day samples were taken at the same time
of day as the mid-log samples.

Strand-specific cDNA library
The library was created by modifying the previously
described dUTP second strand method [13]. All reagents
were from Invitrogen (Carlsbad, CA, USA) except as
noted. We fragmented 200 ng of S. cerevisiae polyA+

RNA by heating at 98°C for 40 minutes in 0.2 mM
sodium citrate, pH 6.4 (Ambion). Fragmented RNA was
concentrated to 5 μl, mixed with 3 μg random hexam-
ers, incubated at 70°C for 10 minutes, and placed on
ice. First-strand cDNA was synthesized with this RNA
primer mix by adding 4 μl of 5× first-strand buffer, 2 μl
of 100 mM DTT, 1 μl of 10 mM dNTPs, 4 μg of actino-
mycin D (USB), 200 U SuperScript III, and 20 U

Table 1 Strains and growth conditions
Strain number Species Background Genotype Source

BB32 Saccharomyces cerevisiae Gift from Leonid Kruglyak’s lab

BY4741 Saccharomyces cerevisiae S288c MATa, his3∆1, leu2∆0, met15∆0, ura3∆0 Gift from Andrew Murray’s lab

Saccharomyces cerevisiae BY4741 Same as above with rrp6∆::KANMX6 ATCC

Saccharomyces cerevisiae BY4741 Same as above with hda2∆::URA3 Gift from Oliver Rando’s lab

Saccharomyces cerevisiae BY4741 Same as above with rrp6∆::KANMX6, hda2∆::NatMX4 This study

NCYC2600 Saccharomyces paradoxus NCYC Stock Center

IFO 1815 Saccharomyces mikatae ATCC

CLIB 592 Saccharomyces castellii CLIB Stock Center

CLIB 209 Kluyveromyces lactis CLIB Stock Center

ATCC, American Type Culture Collection.
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SUPERase-In (Ambion) and incubating at room tem-
perature for 10 minutes followed by 1 hour at 55°C.
First-strand cDNA was cleaned up by extraction twice
with phenol:chloroform:isoamyl alcohol (25:24:1), fol-
lowed by ethanol precipitation with 0.1 volumes 5 M
ammonia acetate to remove dNTPs and re-suspension
in 104 μl H2O. Second-strand cDNA was synthesized by
adding 4 μl 5× first-strand buffer, 2 μl 100 mM DTT, 4
μl 10 mM dNTPs with dTTP replaced by dUTP (Sigma
- Aldrich, St Louis, MO, USA), 30 μl 5× second strand
buffer, 40 U Escherichia coli DNA polymerase, 10 U E.
coli DNA ligase, 2 U E. coli RNase H and incubating at
16°C for 2 hours. A paired-end library for Illumina
sequencing was prepared according to the instructions
provided with the following modifications. First, five
times less adapter mix was ligated to the cDNAs. Sec-
ond, 1 U USER (New England Biolabs - Ipswich, MA,
USA) was incubated with 180- to 480-bp size-selected,
adapter-ligated cDNA at 37°C for 15 minutes followed
by 5 minutes at 95°C before PCR. Third, PCR was per-
formed with Phusion High-Fidelity DNA Polymerase
with GC buffer (New England Biolabs) and 2 M betaine
(Sigma). Fourth, PCR primers were removed using 1.8×
volume of AMPure PCR Purification kit (Beckman
Coulter Genomics - Danvers, MA, USA).

Strand-specific library based on the RNA ligation method
The RNA ligation library was created using a previously
described method [16] starting from 1.2 μg of polyA+

RNA with the following modifications. RNA was frag-
mented by incubation at 70°C for 8 minutes in 1× frag-
mentation buffer (Ambion) and 65- to 80-nucleotide
RNA fragments were isolated from a gel. RNA was
reverse transcribed with SuperScript III (Invitrogen) at
55°C and cDNA was amplified with Herculase (Agilent -
Santa Clara, CA, USA) in the presence of 5% DMSO for
16 cycles of PCR followed by a clean up with 1.8×
volumes of AMPure beads (Beckman Coulter Genomics
- Danvers, MA, USA) rather than gel purification.

Illumina sequencing
Both cDNA libraries were sequenced with an Illumina
Genome Analyzer II (San Diego, CA, USA). The dUTP
library was sequenced using 1 lane of 76-nucleotide
paired reads, and the RNA ligation library was
sequenced using 2 lanes of 51-nucleotide reads. All
RNA-seq data are available in the Gene Expression
Omnibus [GEO:GSE21739].

Data pre-processing
We used the Arachne mapper [33] to map the reads to
the genome. We next identified consecutive regions of
transcription by segmenting the centers of the paired-

end segments with coverage >1 and maximum signal
gaps of size 20 nucleotides.

Assessment of the strand specificity of the library
To evaluate the strand specificity of our library, we used
the known annotation from SGD [14], and published
estimates of UTR lengths [2], or when absent an estima-
tion of 100 bp. According to these annotations we
found that only 53,803 reads (0.62%) mapped to the
opposite strand of known transcripts.

Identification of sense and antisense transcriptional units
We assigned a putative unit to a known gene if it is in
the same orientation as the unit and it overlaps the
known transcript boundaries, including published esti-
mates of UTR length [2], or when absent an estimation
of 100 bp was used. When comparing our transcription
units to known annotations in the SGD [14], we exam-
ined the top 85% of expressed genes, as previously
described [12].

Manual annotation of 402 antisense units
We have manually annotated the boundaries of anti-
sense units covering 75% or more of an opposite ORF,
resulting in 402 antisense units covering 75% or more of
412 ORFs.

Comparing the antisense units to published data from
strand-specific tiling arrays
We compared our units to the published catalog of [2]
using the following criteria. For each of our units, we
searched for units in the catalog of [2] that are on the
same strand and overlap it. We chose the unit with the
highest overlap, and required a minimal threshold of
50% overlap.

Functional analysis of sense units
We constructed a gene set from the 377 sense genes, for
which at least 75% of the ORF is covered by an anti-
sense unit, and tested it for functional enrichment using
a collection of functional categories as previously
described [27]. We also tested the genes for enriched
induction or repression in a compendium of 1,400
annotated arrays, as previously described [27].

Identification of candidate regions in other species
We searched for orthologs of the sense gene in other spe-
cies, using our published orthogroup catalog [27], and
used the relative coordinates of the antisense transcripts
in S. cerevisiae relative to the sense gene to predict their
locations in other species. In cases where there were no
clear candidates for orthologs, or the synteny block was
broken [26], we did not define a candidate.
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Strand-specific RT-PCR
Strand-specific RT-PCR followed an adaptation of a
published protocol [34]. Total RNA was isolated from
strain Bb32(3) at late log time point for two biological
replicates. RNA was Turbo DNase treated (Ambion) fol-
lowing the manufacturer’s stringent protocol followed
by phenol chloroform extraction. For each assay, a
gene-specific, strand-specific reverse transcription (RT)
was performed. The four reactions for each sample
were: +RT L-primer (sense), +RT R-Primer (antisense),
+RT no primer, -RT both primers. First strand cDNA
synthesis started RNA denaturation and the hybridiza-
tion of the 2 pmol of gene specific primer. Total RNA
with primer (10 ng) was heated to 70°C for 10 minutes
and incubated on ice for at least 1 minute. A primer tar-
geting ACT1 mRNA was always included as an internal
control for strand specificity. This was followed by add-
ing a Master mix containing 200 U SuperScript III (Invi-
trogen), 40 U RNaseOut (Invitrogen) and 10 mM dNTP
mix for at 55°C for 15 minutes. The enzyme was heat-
inactivated at 70°C for 15 minutes. RNA complementary
to the cDNA was removed by E. coli RNase H (10 U;
Ambion) and remaining RNAs were digested with 20 U
of RNase Cocktail (Ambion) by incubating at 37°C for
20 minutes. PCR was performed for the sense and anti-
sense transcripts independently. We added 5 μl of RT to
each reaction as template with two gene-specific primers
each at 250 nM final concentration (the same primers
that were used for the sense and antisense RT; Addi-
tional file 7), 300 μM dNTP and 1 U of Ampli Taq
Gold (Applied Biosystems - Carlsbad, CA, USA), in a 50
μl reaction. RNA contaminated with genomic DNA was
used as a positive control. The touch down amplification
program used was as follows: incubation of 95°C for 5
minutes followed by 10 cycles of 95°C for 30 s, 60°C for
30 s -1 degree per cycle, 70°C for 45 s, then followed by
17 to 20 cycles of 95°C for 30 s, 50°C for 30 s, 70°C
45 s, 72°C for 10 minutes (a step required for future
Topo TA cloning (Invitrogen)).

Strand-specific RT-PCR across species
Strand-specific RT-PCR across species used an adapta-
tion of a published protocol [35]. Total RNA was iso-
lated from each species at both the mid-log and early
stationary phase time points. Genomic DNA contamina-
tion was removed with Turbo DNase (Ambion) using
the stringent protocol, and phenol:chloroform to extract
the RNA and to inactivate the DNase. For each of the
species two biological replicates of the mid-log and early
stationary phase time points were tested. Four reactions
were performed for each sample: +RT L-primer (sense),
+RT R-primer (antisense), +RT no primer, -RT. The
sense, antisense, and -RT reactions were done with
2 pmol of primer (Additional file 7; only the primers

with A1 in the title were used for the initial RT-PCR,
and all primers used were designed for the target spe-
cies). RT was done with first strand synthesis only in
20-μl reactions, using 4 units of Omniscript reverse
transcriptase (Qiagen - Valencia, CA, USA) and 500 ng
of total RNA. Each reaction was carried out at 50°C for
20 minutes, and heat inactivated at 70°C for 15 minutes.
PCR was conducted as for the S. cerevisiae RT-PCR
described above.

Strand-specific qRT-PCR across species
The same RT protocol was followed for the qRT-PCR
across species as for the RT PCR above. For each sense-
antisense pair validated, two sets of primers were tested,
and primers for two internal control genes (ACT1 and
PDA1) were included in each reaction. Control primers
(’right primer’, Additional file 7) were added at a con-
centration of 2 pmol to each of the RT reactions. qPCR
was done using the Roche Light Cycler 480 in 12-μl
reactions in a 384 well plate (Roche - Indianapolis, IN,
USA). qPCR was done independently for sense, anti-
sense, and control genes. RT samples were diluted 1:40
in water then 1:2 in Light Cycler 480 SYBR Green I
Master with gene specific primer pair (each primer at
200 nM final concentration). The program protocol
used was as follows: activation, 95°C for 5 minutes;
cycling, 95°C for 15 s and 60°C for 45 s; melt, 95°C
continuous.

Analysis of strand-specific qRT-PCR data
The ratios reported in Additional file 5 and Figure 2a
are log2 ratios of early stationary phase and mid-log
qRT-PCR reads (after normalization by the control gene
PDA1), averaged over the two sets of primers and the
two biological repeats.

nCounter measurements
The following experiments were done in biological
duplicates: heat shock - 0 and 15 minutes; salt stress - 0
and 15 minutes; diauxic shift - log and early stationary
phase; and stationary phase - log and 5 days. Details on
the nCounter system are presented in full in [20]. In a
nutshell, the nCounter system uses pre-defined probes
labeled with molecular barcodes (’code sets’) and single
molecule imaging to detect and directly count millions
of unique transcripts (from up to hundreds of genes) in
a single reaction. The assay is performed in cell lysates,
involves no enzymatic steps prior to detection, and is
highly accurate. Code sets were constructed to detect
putative antisense units and sense genes and additional
controls (Additional file 8). We lysed 7 × 107 (or 2 ×
107, depending on the code set) cells according to the
RNeasy (Qiagen) yeast mechanical lysis protocol. The
protocol was stopped after spinning the lysate to remove
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debris, and 3 μl of the lysate was hybridized for 16
hours followed by processing in the nCounter Prep Sta-
tion and quantification by the nCounter Digital Analy-
zer. We normalized the nCounter data in two steps as
previously described [19]. In the first step, we controlled
for small variations in the efficiency of the automated
sample processing. To this end, we followed the manu-
facturer’s instructions, and normalized measurements
from all samples analyzed on a given run to the levels of
a chosen sample (in all cases we used the first sample in
the set). This was done using the positive spiked-in con-
trols provided by the nCounter instrument. In the sec-
ond step, we used the control genes for which we
designed probes to normalize for sample variation.

Additional material

Additional file 1: Table S1. Strand-specific (sense and antisense)
transcribed units in mid-log S. cerevisiae.

Additional file 2: Table S2. Sense and antisense coverage of SGD
annotated genes.

Additional file 3: Figure S1 to S9. Figure S1: read coverage at antisense
units. (a,b) The distribution (a) and cumulative distribution (CDF) (b) of
read coverage at antisense units ‘called’ by our method (gray) and at all
other loci in the genome with at least one antisense read (orange). The
called units have substantially deeper coverage, whereas 80% of sporadic
loci are covered by a single read. (c) Sense coverage (x-axis) versus
antisense coverage (y-axis) of all verified genes. Genes that we have
detected antisense units opposite them are shown in orange. Figure S2:
statistics for transcription units. (a) Distribution of antisense unit length,
colored by the percentage of overlap with the opposite ORF. Dark blue,
units with at least 25% overlap with the opposite transcript; light blue,
units with at least 50% overlap with the opposite ORF; green, units with
at least 75% overlap with the opposite ORF; orange, units with 100%
overlap with the opposite ORF. (b) Cumulative distribution function of
the units length. Blue, antisense units; red, other units. Figure S3: an
example of an over-segmented antisense unit. Shown is the genomic
region of OPT2; tracks and colors are as in Figure 1, with the addition of
the brown tracks showing the centers of the paired end segments
(forward and reverse), which were used for the segmentation (Materials
and methods). All coverage tracks are normalized and shown up to a
threshold of 3 × 10-8 of the total (genome-wide) number of mapped
reads. Due to low read coverage, both the sense (blue) and the
antisense units (yellow) are over-segmented. After the manual curation of
the antisense units, we defined one long antisense unit (ManualUnit402)
that covers the entire ORF of the gene OPT2. The figure is shown using
the Integrative Genome Viewer [36]. Figure S4: promoter types associated
with antisense units. Shown are two examples of promoter types of
antisense units; tracks and colors as in Figure 1. ManualUnit69 included
the BTT1 gene, and a very long 3′ UTR, as an antisense to the gene
MET32. ManualUnit70 is a long antisense to the gene CTA1, and is
transcribed from the divergent promoter of RMD5. The figures are shown
using the Integrative Genome Viewer [36]. Figure S5: correlation between
differential expression of antisense units and their neighboring (non-
overlapping) genes. Expression of antisense units versus neighboring
genes, which could be co-regulated (using published tiling array data
[2]). Shown is the log ratio of change from glucose (YPD) to ethanol
(YPE). Blue, antisense units with shared promoter (as in Figure S3 in
Additional file 3); red, antisense units with a nearby 3′ UTR; green, linear
fit. Figure S6: differences in UTR length between genes with nearby
antisense units, compared to all genes. Cumulative distribution of the
UTR lengths of all genes (blue) and those with antisense units ending
close to the 3′ UTR end. Figure S7: differential expression of antisense
units and their target sense transcripts. (a) Expression of sense versus
antisense units (using published tiling array data [2]). Shown is the log

ratio of change in sense gene expression from YPD to YPE (x-axis)
plotted versus the same for the antisense strand (y-axis). Red,
differentially expressed genes; green, linear fit. (b,c) The same as (a), only
comparing YPD to galactose growth and to an rrp6 deletion mutant,
respectively. Figure S8: mutant effect on transcription. (a-c) Expression
changes of the sense genes (x-axis) versus expression changes of the
antisense units (y-axis) in the ∆rrp6 mutant (a), the ∆hda2 mutant (b), and
the ∆rrp6∆hda2 mutant (c). Figure S9: mutant effect on differential
expression. (a-c) Differential expression of the sense genes from mid-log
to early stationary phase in the wild type (x-axis) versus the ∆rrp6 mutant
(a), the ∆hda2 mutant (b), and the ∆rrp6∆hda2 mutant (c).

Additional file 4: Table S3. Antisense units validated in RT experiments
in S. cerevisiae.

Additional file 5: Table S4. qRT-PCR results in each gene and species.

Additional file 6: Table S5. Nanostring results in S. cerevisiae.

Additional file 7: Table S6. RT and qRT-PCR primers in each gene and
species.

Additional file 8: Table S7. Control genes used for the Nanostring
nCounter assays.
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and then merge sequences with overlapping alignment, spanning splice 
junctions with reads and paired-ends. Assembly-first (de novo) meth-
ods, such as ABySS1, SOAPdenovo6 or Oases (E. Birney, European 
Bioinformatics Institute, personal communication), use the reads to 
assemble transcripts directly, which can be mapped subsequently to a 
reference genome, if available. Mapping-first approaches promise, in 
principle, maximum sensitivity, but depend on correct read-to-reference 
alignment, a task that is complicated by splicing, sequencing errors and 
the lack or incompleteness of many reference genomes. Conversely, 
assembly-first approaches do not require any read-reference alignments, 
important when the genomic sequence is not available, is gapped, highly 
fragmented or substantially altered, as in cancer cells.

Successful mapping-first methods were developed in the past year4, 
but substantially less progress was made to date in developing effective 
assembly-first approaches. As the number of reads grows, it is increas-
ingly difficult to determine which reads should be joined into contigu-
ous sequence contigs. An elegant computational solution is provided 
by the de Bruijn graph7,8, the basis for several whole-genome assembly 
programs9–11. In this graph, a node is defined by a sequence of a fixed 
length of k nucleotides (‘k-mer’, with k considerably shorter than the read 
length), and nodes are connected by edges, if they perfectly overlap by 
k – 1 nucleotides, and the sequence data support this connection. This 
compact representation allows for enumerating all possible solutions 
by which linear sequences can be reconstructed given overlaps of k – 1. 

Recent advances in massively parallel cDNA sequencing (RNA-Seq) 
provide a cost-effective way to obtain large amounts of transcriptome 
data from many organisms and tissue types1,2. In principle, such data can 
allow us to identify all expressed transcripts3, as complete and contigu-
ous mRNA sequence from the transcription start site to the transcription 
end, for multiple alternatively spliced isoforms. However, reconstruction 
of all full-length transcripts from short reads with considerable sequenc-
ing error rates poses substantial computational challenges4: (i) some 
transcripts have low coverage, whereas others are highly expressed; 
(ii) read coverage may be uneven across the transcript’s length, owing 
to sequencing biases; (iii) reads with sequencing errors derived from a 
highly expressed transcript may be more abundant than correct reads 
from a transcript that is not highly expressed; (iv) transcripts encoded 
by adjacent loci can overlap and thus can be erroneously fused to form 
a chimeric transcript; (v) data structures need to accommodate multiple 
transcripts per locus, owing to alternative splicing; and (vi) sequences 
that are repeated in different genes introduce ambiguity. A successful 
method should address each challenge, be applicable to both complex 
mammalian genomes and gene-dense microbial genomes, and be able 
to reconstruct transcripts of variable sizes, expression levels and protein-
coding capacity.

There are two alternative computational strategies for transcriptome 
reconstruction4. Mapping-first approaches5, such as Scripture3 and 
Cufflinks2, first align all the reads to a reference (unannotated) genome 

Full-length transcriptome assembly from RNA-Seq data 
without a reference genome
Manfred G Grabherr1,8, Brian J Haas1,8, Moran Yassour1–3,8, Joshua Z Levin1, Dawn A Thompson1, 
Ido Amit1, Xian Adiconis1, Lin Fan1, Raktima Raychowdhury1, Qiandong Zeng1, Zehua Chen1, Evan Mauceli1, 
Nir Hacohen1, Andreas Gnirke1, Nicholas Rhind4, Federica di Palma1, Bruce W Birren1, Chad Nusbaum1, 
Kerstin Lindblad-Toh1,5, Nir Friedman2,6 & Aviv Regev1,3,7

Massively parallel sequencing of cDNA has enabled deep and efficient probing of transcriptomes. Current approaches for 
transcript reconstruction from such data often rely on aligning reads to a reference genome, and are thus unsuitable for samples 
with a partial or missing reference genome. Here we present the Trinity method for de novo assembly of full-length transcripts 
and evaluate it on samples from fission yeast, mouse and whitefly, whose reference genome is not yet available. By efficiently 
constructing and analyzing sets of de Bruijn graphs, Trinity fully reconstructs a large fraction of transcripts, including alternatively 
spliced isoforms and transcripts from recently duplicated genes. Compared with other de novo transcriptome assemblers, Trinity 
recovers more full-length transcripts across a broad range of expression levels, with a sensitivity similar to methods that rely on 
genome alignments. Our approach provides a unified solution for transcriptome reconstruction in any sample, especially in the 
absence of a reference genome.
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complexity of overlaps between variants. Finally, Butterfly (Fig. 1c) 
analyzes the paths taken by reads and read pairings in the context of 
the corresponding de Bruijn graph and reports all plausible transcript 
sequences, resolving alternatively spliced isoforms and transcripts 
derived from paralogous genes. Below, we describe each of Trinity’s 
modules.

Inchworm assembles contigs greedily and efficiently
Inchworm efficiently reconstructs linear transcript contigs in six steps 
(Fig. 1a). Inchworm (i) constructs a k-mer dictionary from all sequence 
reads (in practice, k = 25); (ii) removes likely error-containing k-mers 
from the k-mer dictionary; (iii) selects the most frequent k-mer in the 
dictionary to seed a contig assembly, excluding both low-complexity 

For transcriptome assembly, each path in the graph represents a possible 
transcript. A scoring scheme applied to the graph structure can rely on 
the original read sequences and mate-pair information to discard non-
sensical solutions (transcripts) and compute all plausible ones.

Applying the scheme of de Bruijn graphs to de novo assembly of RNA-
Seq data represents three critical challenges: (i) efficiently construct-
ing this graph from large amounts (billions of base pairs) of raw data; 
(ii) defining a suitable scoring and enumeration algorithm to recover 
all plausible splice forms and paralogous transcripts; and (iii) providing 
robustness to the noise stemming from sequencing errors and other 
artifacts in the data. In particular, sequencing errors would introduce a 
large number of false nodes, resulting in a massive graph with millions 
of possible (albeit mostly implausible) paths.

Here, we present Trinity, a method for the 
efficient and robust de novo reconstruction of 
transcriptomes, consisting of three software 
modules: Inchworm, Chrysalis and Butterfly, 
applied sequentially to process large volumes 
of RNA-Seq reads. We evaluated Trinity on 
data from two well-annotated species—one 
microorganism (fission yeast) and one mam-
mal (mouse)—as well as an insect (the whitefly 
Bemisia tabaci), whose genome has not yet been 
sequenced. In each case, Trinity recovers most 
of the reference (annotated) expressed tran-
scripts as full-length sequences, and resolves 
alternative isoforms and duplicated genes, per-
forming better than other available transcrip-
tome de novo assembly tools, and similarly to 
methods relying on genome alignments.

RESULTS
Trinity: a method for de novo 
transcriptome assembly
In contrast to de novo assembly of a genome, 
where few large connected sequence graphs 
can represent connectivities among reads 
across entire chromosomes, in assembling 
transcriptome data we expect to encounter 
numerous individual disconnected graphs, 
each representing the transcriptional com-
plexity at nonoverlapping loci. Accordingly, 
Trinity partitions the sequence data into these 
many individual graphs, and then processes 
each graph independently to extract full-
length isoforms and tease apart transcripts 
derived from paralogous genes.

In the first step in Trinity, Inchworm 
assembles reads into the unique sequences of 
transcripts. Inchworm (Fig. 1a) uses a greedy 
k-mer–based approach for fast and efficient 
transcript assembly, recovering only a single 
(best) representative for a set of alternative 
variants that share k-mers (owing to alterna-
tive splicing, gene duplication or allelic varia-
tion). Next, Chrysalis (Fig. 1b) clusters related 
contigs that correspond to portions of alterna-
tively spliced transcripts or otherwise unique 
portions of paralogous genes. Chrysalis then 
constructs a de Bruijn graph for each cluster 
of related contigs, each graph reflecting the 
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Figure 1  Overview of Trinity. (a) Inchworm assembles the read data set (short black lines, top) by 
greedily searching for paths in a k-mer graph (middle), resulting in a collection of linear contigs (color 
lines, bottom), with each k-mer present only once in the contigs. (b) Chrysalis pools contigs (colored 
lines) if they share at least one k – 1-mer and if reads span the junction between contigs, and then it 
builds individual de Bruijn graphs from each pool. (c) Butterfly takes each de Bruijn graph from Chrysalis 
(top), and trims spurious edges and compacts linear paths (middle). It then reconciles the graph with 
reads (dashed colored arrows, bottom) and pairs (not shown), and outputs one linear sequence for each 
splice form and/or paralogous transcript represented in the graph (bottom, colored sequences).
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across both contigs with a (k – 1)/2 base match on each side of the 
(k – 1)-mer junction. (ii) It builds a de Bruijn graph for each com-
ponent using a word size of k – 1 to represent nodes, and k to define 
the edges connecting the nodes. It weights each edge of the de Bruijn 
graph with the number of k-mers in the original read set that support 
it. (iii) It assigns each read to the component with which it shares the 
largest number of k-mers, and determines the regions within each read 
that contribute k-mers to the component.

Butterfly resolves alternatively spliced and paralogous 
transcripts
Butterfly reconstructs plausible, full-length, linear transcripts by rec-
onciling the individual de Bruijn graphs generated by Chrysalis with 
the original reads and paired ends. It reconstructs distinct transcripts 
for splice isoforms and paralogous genes, and resolves ambiguities 
stemming from errors or from sequences >k bases long that are shared 
between transcripts.

Butterfly consists of two parts (Fig. 1c). During the first part, called 
graph simplification, Butterfly iterates between (i) merging consecu-
tive nodes in linear paths in the de Bruijn graph to form nodes that 
represent longer sequences and (ii) pruning edges that represent minor 
deviations (supported by comparatively few reads), which likely cor-
respond to sequencing errors. Diploid polymorphisms are expected to 
be more frequent than sequencing errors and will likely be maintained. 
In the second part, called plausible path scoring, Butterfly identifies 
those paths that are supported by actual reads and read pairs, using 
a dynamic programming procedure that traverses potential paths in 
the graph while maintaining the reads (and pairs) that support them. 
Because reads and sequence fragments (paired reads) are typically 
much longer than k, they can resolve ambiguities and reduce the com-
binatorial number of paths to a much smaller number of actual tran-
scripts, enumerated as linear sequences.

and singleton k-mers (appearing only once); 
(iv) extends the seed in each direction by find-
ing the highest occurring k-mer with a k – 1 
overlap with the current contig terminus and 
concatenating its terminal base to the growing 
contig sequence (once a k-mer has been used 
for extension, it is removed from the diction-
ary); (v) extends the sequence in either direction until it cannot be 
extended further, then reports the linear contig; (vi) repeats steps iii–v, 
starting with the next most abundant k-mer, until the entire k-mer 
dictionary has been exhausted.

The contigs reported by Inchworm alone do not capture the full 
complexity of the transcriptome; for example, only one alternatively 
spliced variant can be reported at full length per locus, with partial 
sequences reported for unique regions of any alternatively spliced tran-
scripts. However, its contigs do maintain the information required by 
subsequent Trinity components to reconstruct and search the entire 
graph containing all possible sequences. Indeed, except for low- 
complexity and singleton k-mers excluded from seeds or discarded in 
contigs shorter than the minimum length required, Inchworm’s con-
tigs provide a complete representation of the sequence overlap–based 
de Bruijn graph, with each k-mer being unique in the set, and the k – 1 
subsequences implicitly defining the edges in the graph. This approach 
is much more efficient than computing a full graph from all reads at 
once, and it quickly provides a meaningful intermediate output of the 
contigs strongly supported by many k-mers in the reads. By eliminat-
ing singleton k-mers as initial seeds for contig extensions, Inchworm 
further reduces the inclusion in assemblies of k-mers likely resulting 
from sequencing errors.

Chrysalis builds de Bruijn transcript graphs
Chrysalis clusters minimally overlapping Inchworm contigs into sets 
of connected components, and constructs complete de Bruijn graphs 
for each component (Fig. 1b). Each component defines a collection of 
Inchworm contigs that are likely to be derived from alternative splice 
forms or closely related paralogs. Chrysalis works in three phases. 
(i) It recursively groups Inchworm contigs into connected components. 
Contigs are grouped if there is a perfect overlap of k – 1 bases between 
them and if there is a minimal number of reads that span the junction 
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Figure 2  Trinity correctly reconstructs the majority 
of full-length transcripts in fission yeast and 
mouse. (a,c) The fraction of genes that are fully 
reconstructed and in the Oracle Set in different 
expression quintiles (5% increments) in fission 
yeast (50 M pairs assembly) (a) and the fraction 
of genes that have at least one fully reconstructed 
transcript and are in the Oracle Set in different 
expression quintiles in mouse (53 M pairs 
assembly) (c). Each bar represents a 5% quintile 
of read coverage for genes expressed. Gray bars 
show the remaining fraction of transcripts that 
are in the Oracle Set but not fully reconstructed. 
For example, ~36% of the S. pombe transcripts 
at the bottom 5% of expression levels are fully 
reconstructed by Trinity; ~45% of the transcripts 
in this quintile are in the Oracle Set. (b,d) Curves 
show the median values for coverage (as fraction 
of length of reference transcripts) by the longest 
corresponding Trinity-assembled transcript, 
according to expression quintiles in yeast (b) and 
mouse (d), depending on the number of read pairs 
that went into each assembly.
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In the S. pombe data set, nearly all (91%, 
4,600/5,064) reference protein-coding 
sequences exist in the Oracle Set (25-mer 
dictionary, 154 M paired-reads), as almost all 
encoded transcripts (98%) are expressed in the 
measured conditions (  0.5 fragments per tran-
script kilobase per million fragments mapped 
(FPKM)), consistent with previous studies in 
yeasts5,17,18. When reducing the coverage by 
random sub-sampling, the size of the Oracle Set 
is saturated at 50 M paired reads (4,494/5,064, 
Supplementary Fig. 1), which we chose as our 
subsequent benchmarking set.

Trinity recovered most S. pombe 
transcripts
From the 50 M pairs of reads, Trinity fully 
reconstructed 86% of annotated transcripts 
(4,338/5,064, Supplementary Table 1) at 
full length, including 94% of the stringently 
defined oracle transcripts (4,218/4,494). Of the 
276 oracle transcripts not fully reconstructed, 
90 (33%) are reconstructed over at least 90% of 
their length, and 177 (64%) are reconstructed 
over at least 50% of their length.

Overall, Trinity generated 27,841 linear 
contigs longer than 100 bases, grouped into 
23,232 components (Supplementary Note). 
Only 2,454 of the 27,841 Trinity contigs did 
not align to the genome using GMAP19. Of 
those, 30% match a Uniref90 (ref. 20) protein 
(BLASTX E 10 10), almost invariably (90%) a 
Schizosaccharomyces protein, and likely reflect 
assemblies with error-rich reads.

Trinity reconstructs full-length transcripts across a broad range of 
expression levels and sequencing depths (Fig. 2). For example, it accu-
rately captured the full-length transcript of 71% of genes from the second 
quintile (5–10%), and had full-length coverage of 81–95% of annotated 
transcripts in the remaining quintiles (Fig. 2a). Considering both full-
length and partial reconstructions, Trinity reconstructed a large fraction 
of the bases in each transcript (Fig. 2b).

In many cases, Trinity accurately resolved the sequences of closely 
related paralogous transcripts. Out of 77 gene families containing 
185 paralogs21, Trinity recovered at full length all members of 33 families 
(68 genes), at least one member from an additional 33 families (46 genes 
found, 45 genes missing), and missed all 26 genes in the remaining 11 
families, often involving genes not highly expressed. Some of the most 
highly expressed transcripts in S. pombe are derived from paralogous 
genes with very similar sequences (e.g., those encoding ribosomal pro-
teins21), yet were resolved by Trinity.

Extended UTRs and long anti-sense transcripts in S. pombe
Compared to the existing annotation, Trinity extended the 5 untrans-
lated region (UTR) of 312 transcripts (median extension, 80 bp; average, 
176 bp), and the 3  UTR of 543 transcripts (median, 72 bp; average, 172 
bp) (Supplementary Fig. 2a,b). It also found 3,726 previously unanno-
tated 5  UTRs (median length, 183 bp; average length, 288 bp), and 3,416 
3  UTRs (median length, 272 bp; average length, 397 bp).

Trinity identified 2,319 transcripts at 1,235 intergenic loci as 
novel transcribed sequences (Fig. 3a) and 612 long antisense tran-
scripts that covered >75% of the length of the corresponding sense 

RNA-Seq of Schizosaccharomyces pombe
We first generated RNA-Seq data from the fission yeast S. pombe. The 
S. pombe transcriptome12 has relatively substantial splicing for a eukary-
otic microorganism, with short introns (mean intron length = 80.6 bp) 
and dense transcripts (mean intergenic region = 938 bp based on coding 
genes only). To maximize transcript coverage, we pooled ~154 million 
pairs of strand-specific13,14, 76-base Illumina read sequences from four 
biological conditions: mid-log growth, growth after all glucose has been 
consumed, late stationary phase and heat shock15.

Sensitivity limit for full-length reconstruction
We next estimated the upper sensitivity limit for which annotated 
transcripts can possibly be perfectly reconstructed given a particular 
data set of sequences. Any assembly approach based on a particular 
k-length oligomer is limited to those sequences that are represented 
by the exact k-mer composition of the RNA-Seq read set. To deter-
mine this empirical upper sensitivity limit, we built a k-mer dictionary 
from all the reads and identified all known reference protein-coding 
sequences that are reconstructable to full length given the read set, as 
those sequences that can be populated by adjacent and overlapping 
k-mers across their entire length. We call this set of sequences the 
‘Oracle Set’. Because this set also contains transcript sequences that 
are covered by k-mers, but not entire reads, some transcripts will 
appear reconstructable but are not. Conversely, the Oracle Set reflects 
only annotated known genes and known isoforms, which are likely 
an underestimate, especially in mammals16. Nevertheless, the Oracle 
Set provides a useful sensitivity benchmark.
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Figure 3  Trinity improves the yeast annotation. Shown are examples of Trinity assemblies (red) along 
with the corresponding annotated transcripts (blue) and underlying reads (gray) all aligned to the 
S. pombe genome (read alignment is shown for graphical clarity; no alignments were used to generate the 
assemblies). (a) Trinity identifies a new multi-exonic transcript (left) and extends the 5  and 3  UTRs of 
the coq9 gene (right). (b) Trinity extends the UTRs of two convergently transcribed and overlapping genes.
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(Supplementary Fig. 5). It extended the 3  UTR in 2,918 transcripts 
(2,819 loci, median length, 20; average length, 248; Supplementary 
Fig. 2d), adding 3  UTR exons in 62 cases (Supplementary Fig. 2b). 
Differences in UTR length were often due to alternative splicing events 
restricted to the UTR.

High sequence fidelity of reconstructed transcripts
We measured the assembled transcript base error rate by aligning the 
full-length transcripts to the corresponding reference genome (using 
BLAT), and capturing mismatches, insertions and deletions from the 
highest scoring alignment (Supplementary Table 3). In fission yeast, 
rates of mismatches, insertions and deletions are each <1 in 10,000. 
In mouse, rates were approximately twice as high, reflecting the lower 
transcript fold-coverage. As the raw read error rate is ~1%, Trinity thus 
resolved ~99% of sequencing errors.

Comparing Trinity’s performance to other methods
We compared Trinity’s performance to that of other assemblers by several 
measures. First, we examined the number of reference transcripts recon-
structed to full-length by each method (‘sensitivity’). In S. pombe, Trinity 

transcript (Fig. 3b), and were not likely to 
be derived from extended transcription of a 
neighboring gene. One hundred thirteen of 
the intergenic transcripts and 612 long anti-
sense transcripts were multiexonic. Although 
both were expressed at lower levels on aver-
age than annotated protein-coding genes 
(Supplementary Fig. 3), 49 long antisense 
transcripts (at 35 loci) were at least fivefold 
more highly expressed than the correspond-
ing sense coding transcript (e.g., an antisense 
transcript to the meiotic gene mug27/slk1 
(SPCC417.06c) was >100-fold more highly 
expressed, Supplementary Fig. 4). This sup-
ports a role for antisense transcriptional 
regulation in meiosis for S. pombe15,22–24, 
and is consistent with previous findings in 
S. cerevisiae25.

Trinity recovered most expressed 
annotated mouse transcripts
Compared to yeasts, mammalian transcrip-
tomes exhibit substantially more complex 
patterns of alternative splicing26. To test 
Trinity’s ability to identify different isoforms, 
we sequenced ~52.6 million 76-base read 
pairs from C567BL/6 mouse primary immune dendritic cells. Unlike 
in S. pombe, only 54% of known mouse genes (10,724) were identified as 
expressed ( 0.5 FPKM), and of those, the Oracle Set determined 8,358 
to be full-length reconstructable (727 loci have two or more isoforms 
variable in the protein-coding sequences, totaling 9,258 transcripts).

Trinity reported 48,497 contigs longer than 350 bp, capturing 8,185 
transcripts to full-length (Supplementary Table 2 and Supplementary 
Note), corresponding to 7,749 loci (including 7,947 (86%) transcripts at 
7,573 (91%) loci in the mouse Oracle Set). The percentage of transcripts 
recovered to full-length and the fraction of length captured were high 
across a broad range of expression levels (Fig. 2c,d).

Trinity resolved splice isoforms and gene paralogs in a manner con-
sistent with the mouse Oracle Set. Trinity found 872 full-length, alterna-
tively spliced, isoforms from 385 loci (53% of the loci with alternatively 
spliced variants in the Oracle Set), and matched the full-length tran-
scripts for 463 (61.6%) of 752 paralogous transcripts in the Oracle Set 
(>70% identity between paralogs, Fig. 4).

Trinity extended the annotated 5  UTR for 5,265 transcripts (5,036 
loci, median length, 43; average length, 91, Supplementary Fig. 2c), 
and included one or more additional 5  UTR exons in 305 cases 

NM_007916
Ddx19a Ddx19-like protein

NM_172284
Ddx19b DDX19 homolog

10 kb

a

b

98

TCAGCTTCTC...GCTCTGCCCA (71)

GTCTTTTTCC...AGAGGAAGAG (253) CGCGCCGTTT...AGAGGAAGAT (288)

GAGAAAGAGG...GCCTGAAACC (149)

TGATGCTTGC...TTCGAGGCAA (229)

ACAGCTTCTC...GCATTGCCTT (71)

CAAATTGGAGAGG (13)TAAATTGGAGAGA (13)

GGTCAGAAGG...TGACAAATTT (980)

CTGCAAATAG...TATGTAGTGA (179) GTGCAAATGA...AGTTTCCTGG (2,076)

31

99 28
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108 35

80 36

75 49

Figure 4  Trinity resolves closely paralogous genes. 
(a) The compacted component graph for two 
paralogous mouse genes, Ddx19a and Ddx19b 
(93% identity). Red and blue arrows highlight 
the two paths chosen by Trinity out of the 64 
possible paths in this portion of the graph alone. 
Numbers on the edges indicate the number 
of supporting reads; numbers in parentheses 
represent the sequence length at each node. (b) 
Alignments between the transcripts represented 
by the red and blue paths in a and the paralogous 
genes Ddx19a and Ddx19b relative to the mouse 
reference genome (genome alignment shown for 
graphical clarity only; no alignments were used to 
generate the assemblies).
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8,293) exhibiting better sensitivity. Furthermore, Trinity and Cufflinks 
appear best-tuned in their sensitivity across the broadest range of expres-
sion levels (Supplementary Fig. 7). Unlike Trinity, several of the de novo 
methods did not perform well in fully reconstructing transcripts within 
the highest expression quintiles (Supplementary Fig. 7).

Second, we assessed the accuracy of splice pattern detection. We 
mapped all the reconstructed transcripts (annotated or not) back to 
the reference genome and considered each individual intron or the 
combinations of introns (splicing patterns) defined by this mapping 

(Fig. 5c–f). We compared the number of 
annotated reference introns (or splicing pat-
terns) captured by each method (Fig. 5c–f, 
y axis), and the number of previously unan-
notated introns (or extended splicing patterns) 
defined by each method’s transcripts (Fig. 5c–f, 
x axis). Unannotated introns or splice patterns 
captured by more than one method are less 
likely to be false positives. In S. pombe, Trinity 
identified the largest number of reference 
introns (4,543) (Fig. 5c) and 1,582 unanno-
tated introns, most of which are in putative, 
unannotated UTRs. Of these, 1,174 (74%) are 
also identified by at least one other method and 
thus are more likely genuine. Trinity also iden-
tifies the largest number of annotated splicing 
patterns in S. pombe (Fig. 5e). The alternative 
methods also report large numbers of falsely 
fused S. pombe transcripts, which are distinct 
transcripts encoded by adjacent genes that are 
reported as a single merged transcript by the 
assemblers. These contribute to the lack of sen-
sitivity of the alternative methods.

In mouse, most methods had similarly high 
sensitivity for detecting individual annotated 
introns (Fig. 5d), but varied in detecting 
complete splicing patterns (Fig. 5f). Scripture 
identifies the most annotated splicing patterns 
(7,274), closely followed by Trinity (7,127). 
However, Scripture reports >110,000 unique 
splicing patterns, about tenfold more than 
Trinity and all other methods (each less than 
10,000 unique patterns), suggesting many false 
positives in Scripture, and excellent precision 
in Trinity. Overall, relatively few of the nonan-
notated splicing patterns predicted by each 
method are supported by at least one other 
method (18–25%). (The notable exceptions 
were the particularly low fraction for Scripture 
(2%) and high fraction for ABySS (66%)).

Finally, we examined the number of distinct 
contigs that mapped to each reference genomic 
locus, as well as the coverage (tiers) of recon-
structed transcripts per locus. This accounts 
for multiple reported transcripts that represent 
the same region of a locus owing, for example, 
either to alternative splicing, captured allelic 
variation or enumerating transcripts with 
otherwise undetected sequencing errors. In 
S. pombe, Trinity reports 7,057 transcripts that 
map to 4,874 genes with an average coverage of 
1.37 tiers per gene, similar to all the alternative 

outperformed the de novo sequence assemblers, ABySS1, Trans-ABySS27 
and SOAPdenovo6, as well as the mapping-first programs Scripture3 and 
Cufflinks2 (Fig. 5a). Trinity performed well across a range of 10 M to the 
full 150 M input sequence reads, whereas the alternative methods tended 
to peak at ~50 M pairs or smaller inputs (Supplementary Fig. 6a). In 
mouse (Ref-Seq annotation set, Fig. 5b), Trinity (8,185 transcripts; 7,749 
genes) outperformed the other de novo assembly methods ABySS (5,561; 
5,500), Trans-ABySS (7,025; 6,598) and SOAPdenovo (761; 760), with the 
mapping-first programs Cufflinks (9,010; 8,536) and Scripture (9,086; 
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Figure 5  Comparison of Trinity to other mapping-first and assembly-first methods. (a,b) Evaluation 
based on number of full-length annotated transcripts reconstructed by each method in S. pombe (50 M 
read pair assemblies) (a) and mouse (53 M read pair assemblies) (b). Number of genes reconstructed in 
full length (blue) or as fusions of two full-length genes (green, yeast only) and the number of full-length 
reconstructed transcript isoforms (red, mouse only) in each of four assembly-first (de novo) and two 
mapping-first approaches. (c,d) Evaluation based on the number of introns defined by the transcripts 
from each method for S. pombe (c) and mouse (d). Shown is the number of distinct introns consistent 
with the reference annotation (y axis) versus the number of uniquely predicted introns (x axis), based on 
mapping to the genome of the transcripts reconstructed by the different methods. (e,f) Evaluation based 
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patterns (y axis) consistent with the reference annotation versus the number of unique splicing patterns 
(x axis), for each method.

ART ICL ES
©

 2
01

1 
N

at
ur

e 
A

m
er

ic
a,

 In
c.

  A
ll 

ri
gh

ts
 r

es
er

ve
d.



NATURE BIOTECHNOLOGY   ADVANCE ONLINE PUBLICATION 7

De novo assembly of the whitefly transcriptome
In the absence of a sequenced genome, de novo assembly of RNA-Seq 
is the only viable option to study the transcriptomes of most organisms 
to date. For example, although the highly diverse class Insecta contains 
several key model organisms, it is not densely covered by high-quality 
draft genome sequences. In addition, insect transcriptomes exhibit com-
plex alternative splicing patterns28. The whitefly B. tabaci is one such 
example; the genome was not sequenced, and the RNA-Seq samples are 
genetically polymorphic, as they are derived from a mixture of individu-
als from an outbred population28.

methods except Scripture (4.37 tiers per gene) and trans-ABySS (5.08 
tiers per gene). In mouse, the performance of Trinity (31,706 contigs 
map to 11,334 genes, 2.05 tiers per gene on average) is similar to that of 
all other methods except trans-ABySS (111,000 contigs, 10,685 genes, 
5.93 tiers). The large numbers of Trans-ABySS transcripts covering 
similar regions of loci is not reflected in the number of distinct splicing 
patterns, indicating that multiple similar transcript sequences are being 
generated at individual loci, rather than many different splice isoforms. 
ABySS alone, although lacking the higher sensitivity of Trans-ABySS, 
reports a smaller number of contigs (~1 transcript tier per locus).
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Figure 6  Trinity reconstructs polymorphic transcripts in whitefly. (a) Allelic variation evident from mapping RNA-Seq reads to a full-length whitefly transcript 
reconstructed by Trinity. At the top is a schematic of a single transcript orthologous to the Drosophila melanogaster Lamin gene Lam, identified by grouping 
reconstructed transcripts having allelic variants (colored yellow). Gray coverage plot shows cumulative read coverage along the transcripts. SNPs are marked 
with colored bars and scaled based on the relative proportions of each variant (blue: C, red: T, orange: G, green: A). Individual reads are shown below 
coverage plot (forward reads, blue; reverse, red). (b) Comparison of performance for de novo assembly of the whitefly transcriptome. The y axis is a count 
of the unique top-matching (BLASTX) uniref90 (ref. 20) protein sequences aligned Trinity transcripts across a minimal percent of their length. (c) Example 
of two alternatively spliced transcripts resolved even in the absence of a reference genome. Shown are two isoforms of an ELAV-like gene reconstructed by 
Trinity (gray boxes indicate alternative exons). Exon structure is determined for visualization by the D. melanogaster ortholog. The protein sequence alignment 
shows the similarity between the two whitefly isoforms and orthologous proteins from other insects, and it confirms the splice variants (gray boxes).
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Finally, we assessed precision by considering all the reconstructed tran-
scripts and the number of ‘correct’ intron boundaries and splice patterns. 
Each measure represents a useful benchmark, and showed that Trinity 
performs better than other de novo methods and on par with mapping-
first methods depending on the organism.

Trinity is important for both genome annotation and the study of 
non-model organisms. For example, all but two vertebrate genomes 
are available only as unfinished drafts, containing sequence gaps, scaf-
folds that cannot be anchored to chromosomes and assembly errors30. 
Each of these limitations hinders genome annotation and read map-
ping. We expect that new genomes, assembled from next-generation, 
high-throughput sequencing data, will be even more fragmented. Thus, 
high-quality de novo transcriptome reconstruction, as implemented in 
Trinity, featuring low base-error rates and the ability to capture multiple 
isoforms, will prove crucial to maintain acceptable levels of accuracy 
when characterizing genes. Finally, genomic sequences are available 
for only a tiny fraction of the enormous variety of organisms. Trinity 
provides an effective starting point to examine the transcriptomes of 
such species.

METHODS
Methods and any associated references are available in the online version 
of the paper at http://www.nature.com/nbt/index.html.

Accession Code. GEO (mouse data): GSE29209; SRA (fission yeast data): 
SRP005611. Trinity and its open source code are publicly available at http://
TrinityRNASeq.sourceforge.net

Note: Supplementary information is available on the Nature Biotechnology website.
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ONLINE METHODS
Inchworm. Inchworm decomposes each sequence read into overlapping k-mers 
(default k = 25). Each k-mer is stored in a hash table as a key-value pair, where the 
key is the k-mer sequence and the value is the abundance of that k-mer in the input 
data set. The k-mer key is stored as a 64-bit unsigned integer with 2-bit nucleotide 
encoding. Likely sequencing error-containing k-mers are identified by examining 
k-mers that have identical k – 1 prefixes, differing only at their terminal nucleotide, 
and removing those k-mers that are <5% abundant as compared to the most highly 
abundant k-mer of the group. After processing the entire read set into a set of k-mers 
and pruning the likely error k-mers, the most frequently occurring k-mer is identi-
fied as a seed k-mer for reconstruction of draft transcript contigs. The information 
content of the seed k-mer is computed as Shannon’s Entropy31, and only k-mers 
having entropy H  1.5, occurring at least twice in the complete set of input reads, 
and not palindromic, are allowed as seed k-mers. The seed k-mer is extended at 
both ends in a coverage-guided manner, first from 5  to 3 , followed by extension 
from 3  to 5 . Seed selection by Inchworm was largely inspired by similar methods 
implemented in the RepeatScout algorithm32. Extension from the seed is performed 
greedily based on the frequencies of candidate overlapping k-mers, with the single 
most abundant k-mer with (k – 1) overlap chosen to provide a single-base exten-
sion. In the case of tied extensions, paths are recursively explored to identify the 
extension yielding the cumulatively maximal coverage. Extension continues until 
no k-mer exists in the data set to provide an extension. The sequence yielded from 
the bidirectional seed k-mer extension is reported as a draft transcript contig, and 
the set of overlapping k-mers comprising the contig are removed from the hash 
table. The entire cycle of seed selection and bidirectional k-mer extension continues 
until all k-mers in the hash table have been exhausted.

In strand-specific mode (default), k-mers are derived from only the sense strand 
of the RNA-Seq read. Double-stranded mode, used with non-strand-specific RNA-
Seq data involves several modifications: both the sense and the reverse-comple-
mented read sequence are parsed into overlapping k-mers; during Inchworm contig 
extension, a k-mer chosen to extend a given path has the reverse-complemented 
k-mer sequence disabled for further k-mer extensions; and when an Inchworm 
contig is reported at the end of one iteration of contig assembly, both the sense and 
reverse-complemented k-mers are removed from the k-mer dictionary.

Only Inchworm contigs with an average k-mer coverage of 2 and length at least 
48 (2*(k – 1), k = 25), the minimal contig length required to capture variation 
anchored by (k – 1) at each terminus, are used by Chrysalis, as described below.

Chrysalis. To convert the linear contigs into a proper de Bruijn graph, Chrysalis first 
builds a k – 1-mer lookup table and recursively pools contigs that share sequences 
(excluding low-complexity sequence, as above in Inchworm) into components, 
given that there are reads that span across a potential junction (the ‘welds’) and 
extend perfect matches by (k – 1)/2 bases on each side. The number of welds must 
exceed 0.04 times the average k – 1-mer coverage of each contig (twice the sequenc-
ing error rate in a read, the upper bound of which we estimate at ~2%), as computed 
by Inchworm. In addition, the k – 1-mer coverage of one contig cannot exceed the 
coverage of the other by a factor of 100 (empirically determined). Next, Chrysalis 
processes each component individually and computes a de Bruijn graph from the 
linear inchworm contigs. The reads are then mapped to components by selecting 
the component that shares the most k – 1-mers with the read, with a single k – 1-mer 
being sufficient for assignment. Chrysalis also counts all k-mers and stores them as 
‘edge weight’ to indicate their support in the read set. Components with less than a 
minimum number of nodes are discarded ( a configurable parameter that defaults 
to an empirically determined value of 300 – (k – 1) = 276).

Butterfly. The input to butterfly is a de Bruijn graph component as built by 
Chrysalis. First, Butterfly trims edges in the de Bruijn graph. It uses two criteria. 
(1) We reasoned that if there is a node with several outgoing edges, such that one of 
them has a much smaller read support than the total outgoing reads (less than 5%), 
then it probably represents a sequencing error or a variant with very low expres-
sion (Supplementary Fig. 8a). (2) If the outgoing edge has less than 2% support 
from the total incoming reads, then it is more likely a spurious transcript extension 
(Supplementary Fig. 8b). Outgoing or incoming edges that fail according to one 
of these criteria are removed (both these numbers are parameters to the program, 
and can be changed for specific requirements).

Second, Butterfly transforms the modified graph into a weighted sequence 
graph, where each node is a sequence, rather than an individual k-mer providing 
a single-base path extension as in the de Bruijn graph. In this step, Butterfly gener-

ates a compact graph—the set of paths in the compacted graph is identical to that 
of the original de Bruijn graph. As a result, linear paths will be compacted into a 
single node, and polymorphisms will be minimized. The weight on each edge of 
the modified graph corresponds to the number of reads supporting the edge in 
the original de Bruijn graph. For each compound node, we compute the average 
coverage, which corresponds to the weights of the original edges that made up the 
sequence divided by the length of the node.

We then repeat the trimming step, except that when examining compound nodes 
of length >1, we also use the node coverage as a measure of opposite flow in the 
second criterion. These two steps (trimming and graph compaction) are reiter-
ated until convergence. The resulting graph represents possible transcripts as paths 
through the graph.

Finally, Butterfly uses read sequences, read-pairings and Chrysalis’ read map-
pings to the graph to select the paths that are best supported by read sequences. The 
goal is to look for paths with physical evidence for contiguity, by either reads or read 
pairings. To do so, we first represent all the reads that contributed to the de Bruijn 
graph by the list of the nodes that they traverse. We then use a dynamic program-
ming algorithm for finding supported path prefixes. The procedure is initialized 
with source nodes in the graphs (one without incoming edges), and at each step 
one path prefix is extended by an additional node.

When extending a path prefix that ends at node n, we consider all outgoing edges 
from n, and evaluate the support for the extension. By construction, each edge in the 
graph is supported by reads. We however, further require that the last L nucleotides 
of the path be supported by reads. We define a path as L-supported at coverage c if 
at each extension of this path, we have at least c reads supporting the L nucleotide 
suffix of this path (Supplementary Fig. 8c). A read supports a path fragment either 
if it contains that fragment as a subsequence, or in the case of paired-reads, if the 
fragment lies on all paths from nodes that correspond to the first sequence mate to 
the second sequence mate. In addition, to avoid combinatorial explosion because 
of small variations (most likely caused by sequence errors), once we extend a path 
prefix, we examine other paths ending at the same node, and merge the new path 
with previous path prefix ending at the same node if the two are >95% identical.

In the results here we used L = 250 and c = 2. The requirement for 250-supported 
paths emerges from the expected insert size of our library, as we do not expect to 
have support for a longer suffix if our read pairs (derived from a single fragment) do 
not span that far. We note that the resolution of ambiguities, which includes alterna-
tive splicing and allelic variation, is limited to the insert size of the read pairs, or the 
read lengths for unpaired data. Although this program can be in theory exponential 
in size, in practice its cost is defined by the number of supported paths.

Yeast and mouse cell growth conditions. We used the S. pombe strain SPY73 975h+ 
and dendritic cells isolated from C57BL/6J mice. Details of cell isolation and growth 
conditions are in the Supplementary Methods.

RNA isolation for yeast samples. Total yeast RNA was isolated using Qiagen RNeasy 
kit following manufacturers’ protocol for mechanical lysis using 0.5 mm zirconia/
silica beads (Biospec). PolyA+ RNA was isolated from total RNA using Poly(A) 
purist kit (Ambion) or Dynabeads mRNA purification kit (Invitrogen). Total RNA 
and polyA+ RNA were treated with Turbo DNA-free (Ambion), as described. The 
integrity of the RNA was confirmed using the Agilent 2100 Bioanalyzer and quanti-
fied using RNA Quant-It assay for the Qubit Fluorometer (Invitrogen).

RNA preparation for mouse RNA. Dendritic cells were lysed using QIAzol reagent 
and total RNA was extracted the miRNeasy kit’s procedure (Qiagen), sample quality 
was controlled on a 2100 Bioanalyzer (Agilent).

RNA-Seq library preparation. For the mouse dendritic cell sample, we created 
a dUTP second strand library starting from 200 ng of Turbo DNase treated and 
poly(A)+ RNA using a previously described method14 except that we fragmented 
RNA in 1  fragmentation buffer (Affymetrix) at 80 °C for 4 min, purified and 
concentrated it to 6 l after ethanol precipitation. For the S. pombe samples, we 
prepared dUTP second-strand libraries similarly, with the following additional 
modifications. We added an index (8-base barcode) to each library to enable pool-
ing of these libraries (S. Fisher, Broad Institute, personal communication). In addi-
tion, the adaptor ligation step was done with 1.2 l of index adaptor mix and 4,000 
cohesive end units of T4 DNA Ligase (New England Biolabs) overnight at 16 °C in 
a final volume of 20 l. Finally, we generated libraries with an insert size ranging 
from 225 to 425 bp.
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Reconstructed transcript sequences (by de novo assembly, Scripture or Cufflinks) 
were mapped to the reference coding sequences using BLAT35. Full-length reference 
annotation mappings were defined as having at least 95% sequence identity cover-
ing the entire reference coding sequence and containing at most 5% insertions or 
deletions (cumulative gap content). In evaluating methods that leverage the strand-
specific data (Trinity and Cufflinks), proper sense-strand mapping of sequences was 
required. Transcripts reconstructed by the alternative methods (Scripture, ABySS 
and SOAPdenovo) were allowed to map to either strand. Fusion transcripts were 
identified as individual reconstructed transcripts that mapped as full-length to mul-
tiple reference coding sequences and lacked overlap among the matching regions 
within the reconstructed transcript. One-to-one mappings were required between 
reconstructed transcripts and reference transcripts, including alternatively spliced 
isoforms, with the exception of fusion transcripts.

Analysis of alignment-inferred introns and splicing patterns from reconstructed 
transcripts. Reconstructed transcripts were mapped to genome sequences using 
GMAP, reporting only the single top-scoring alignment per sequence. Individual 
introns and complete splicing patterns were extracted from each of the alignments 
and compared to reference annotations using custom PERL scripts. Unique introns 
(missing from the reference annotations) were required to contain consensus dinu-
cleotide splice sites (GT or GC donors and AG acceptors).

Locus coverage (tiering) by reconstructed transcripts. The BLAT alignments 
between reference coding sequences (loci) and reconstructed transcripts described 
above were organized into locus-level coverage tiers as follows. Given a set of dif-
ferent reconstructed transcripts that have a best match to a reference sequence, 
the first match is selected and applied to that reference contig at the first coverage 
tier. The remaining matches are then examined for placement in the first tier. If a 
subsequent reference-matching region in common between two matches exceeds 
30% of the shorter match length, then this subsequent match is propagated to the 
next highest tier lacking such restrictive match overlap. Tier placement continues 
until all matches are placed. The maximal tier level defines the locus-level coverage 
for that reference sequence and can be at most equal to the number of reconstructed 
transcripts mapped to that locus. Strand-specific transcript reconstructions were 
tiered in a strand-specific manner (as in the case of Trinity and Cufflinks). In the 
case of a highly fragmented transcriptome assembly, it is possible for many recon-
structed transcripts to populate the first tier yielding a coverage of 1. In the case of 
alternatively spliced isoforms or redundant transcript generation at a given locus, 
the coverage value will exceed 1.

Running Trinity on data sets of varying read depth. We randomly subsampled 
pairs in the mouse data set to generate such subsets. Inchworm and Chrysalis were 
run on a server with 256 GB of RAM, Butterfly on a server (load sharing facility 
(LSF)) farm in parallel. Wall-clock run times are: ~17 h (10 M pair set), ~36 h 
(30 M pair set), and ~60 h (full 50 M pair set). All experiments were performed 
with Trinity using parameters: minimum contig length of 100 bases and average 
fragment length of 300 bases.

Computing gene expression values from aligned RNA-Seq reads. The aligned 
reads (by TopHat in the case of mouse leveraging the full 52.6M read pairs, and by 
BLAT in the case of S. pombe leveraging the 50 M read pairs) were used for comput-
ing gene (and other feature) expression values. The number of fragments mapped 
to segments (exons) of a genome-mapped feature were tallied based on overlap 
of the segment’s coordinates by either read from a sequenced fragment, counting 
fragments as opposed to counting individual reads. Expression was computed as 
the normalized value of fragments per kilobase of feature sequence per million 
fragments mapped, or FPKM2. Calculations were performed using custom PERL 
scripts. Genes were defined as ‘expressed’ if observed to have expression values of 
at least 0.5 FPKM, and these genes were divided into expression quintiles at 5% 
intervals for purposes of analysis.

31. Shannon, C.E. Prediction and entropy of printed English. Bell Syst. Tech. J. 30, 50–64 
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RNA-Seq library sequencing. We sequenced all the cDNA libraries with an 
Illumina Genome Analyzer IIx. We pooled the four S. pombe libraries together with 
four other indexed libraries and sequenced them using eight lanes of 76-base paired 
reads. We sequenced the mouse library using two lanes of 76-base paired reads.

Defining empirical limits of full-length transcript reconstruction. Inchworm 
was used to construct a k-mer dictionary based on the input reads as described 
above. Reference protein-coding sequences were examined by searching for each 
overlapping k-mer sequence in the dictionary. Reference protein-coding sequences 
lacking at least one k-mer in the Inchworm k-mer graph were classified as inacces-
sible for full-length reconstruction by means of the k-mer graph method. Those 
reference sequences fully represented within the k-mer dictionary were included 
in the Oracle Set.

Finding paralogous genes in mouse. To determine paralogous transcripts, we 
aligned all isoforms of all genes present in the Oracle Set against each other, using the 
alignment program Satsuma33 We required alignments to be longer than half of the 
shorter of both sequences and at sequence identity of 70% and up. If at least one pair 
of transcripts from two genes met the criteria, we called both genes paralogous.

Short-read spliced alignments and transcript reconstructions using Cufflinks and 
Scripture. The S. pombe genome was obtained from the Sanger Institute (http://www.
sanger.ac.uk/Projects/S_pombe/download.shtml). The mouse genome version 9 
was obtained from the UCSC mouse genome browser gateway (http://genome.ucsc.
edu/cgi-bin/hgGateway?db=mm9). Left and right fragment reads were separately 
aligned to the genomes using TopHat (version 1.1.4)34 with mouse RNA-Seq reads, 
and BLAT with S. pombe RNA-Seq reads; the BLAT short-read alignment pipeline 
is provided at http://inchworm.sourceforge.net/blat_short_read_alignment.html . 
We found BLAT to provide more accurate short-read alignment with S. pombe, with 
TopHat lacking sensitive detection of the very short introns in S. pombe. In addition, 
both Scripture and Cufflinks demonstrated better performance using the BLAT 
alignments for S. pombe as compared to the TopHat alignments (Supplementary 
Fig. 9a). Conversely, performance of Scripture and Cufflinks using TopHat align-
ments in mouse exceeded that using BLAT alignments (Supplementary Fig. 9b). 
Hence, for evaluation purposes, we leveraged BLAT short-read spliced alignments 
in S. pombe and TopHat alignments in mouse.

BLAT alignments of short reads to the S. pombe genome were performed using 
the pipeline described above with the following settings: maximum intron length set 
to 500 bases, maximum distance between read pairs of 500, and only the single best 
alignment was reported per read. TopHat alignments to the mouse genome were 
performed using the following parameters: minimum intron length of 50 bases, 
maximum intron of 100 kb and mate inner distance set to 300 bases. Transcribed 
strand information was assigned to the individual reads based on knowledge of the 
fragment type (left or right) and the aligned strand of the genome. Both Cufflinks 
(version 0.9.3)2 and Scripture3 (version VPaperR3, obtained from Scripture author 
Manuel Garber) were executed on these alignments.

Evaluation of published de novo methods. Illumina reads were de novo assembled 
using ABySS1 (version 1.2.1), SOAPdenovo6 (version 1.04) or Trans-ABySS27. 
Command-line parameters used with ABySS were “abyss-pe k=25 E=0 n=10 
in=’left.fa right.fa’ ”, using a k-mer length of 25. Likewise, a 25-mer length was 
used with SOAPdenovo along with other default parameters. Trans-ABySS27 was 
run on mouse and S. pombe using a set of k-mers including 26, 31, 36, 41 and 46 fol-
lowed by merging the results by running the first stage of the trans-ABySS analysis 
pipeline. In the case of whitefly, all k-mers from 26 through 46 were used so as to 
maximize sensitivity given the smaller input number of reads.

Comparisons to reference transcripts. Current gene annotations for S. pombe 
were downloaded as file ‘pombe_290110.gff ’ from GeneDB (http://old.genedb.
org/genedb/pombe/). Ref-Seq transcript gene annotations were downloaded for 
mouse at the UCSC mouse genome browser gateway (http://genome.ucsc.edu/
cgi-bin/hgGateway?db=mm9) in BED format. Protein coding nucleotide sequences 
were extracted from the genome sequences based on the gene annotations using 
custom PERL scripts. The mouse reference coding sequences were further dis-
tilled to remove entirely identical sequences corresponding to isoforms encoding 
identical proteins and paralogous sequences: the original 19,947 genes encoding 
23,881 transcripts were reduced to 19,857 genes encoding 22,717 non-identical 
coding transcripts.
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Chapter 6

Discussion

In my dissertation I set out to develop tools for transcriptome characterization

using RNA-Seq data without relying on pre-existing annotation. I have applied

these tools to study a range of organisms: from the dense transcriptomes of the

budding- and fission-yeast to the highly spliced and complex mouse transcrip-

tome.

6.1 Characterizing the budding yeast transcrip-

tome using the mapping-first approach

In the paper described in Chapter 2 (Yassour et al., 2009) we aimed to test

whether it is possible to ab-initio define a complete yeast transcriptome using only

the (unannotated) genome sequence and massively parallel cDNA sequencing.

Our approach identified 85% of expressed genes and correctly inferred 254 of the

305 known splicing events. This is impressive as not all splice junctions are used

in our samples. Also, it corrected a number of current annotations and identified

previously undescribed transcriptional units and splice junctions, several of which

we validated experimentally. Last, the method can also accurately quantify the

expression levels of transcripts.

This mapping-first approach had several limitations. First, as in all RNA-

Seq based studies, we are limited to the expressed portion of the transcriptome

of our sample. We partly addressed this issue by creating libraries from two

physiological conditions. Second, we missed splicing events due to local non-

uniqueness at the splice junction. This was at the early days of RNA-Seq and

we had only single-end 32bp long reads. With current read length and paired
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reads, this problem is less severe. Finally, due to the lack of strand specificity

our approach was limited in detecting and distinguishing antisense transcripts

and di↵erentiating between close divergent transcription units. In most cases we

could recover transcript orientation from biases in read coverage along a gene,

but we can further enhance the predictions by constructing strand-specific cDNA

libraries, that were not available then, but are currently the standard.

Unlike previous RNA-Seq studies (Nagalakshmi et al., 2008; Mortazavi et al.,

2008), we demonstrated the use of RNA-Seq for complete, ab-initio construction

of a eukaryotic transcriptome, independent of any existing genome annotation.

For example, Mortazavi et al. (2008) use a mapping approach that relies on map-

ping reads to known gene models, exons and splice junctions. Such approaches

cannot detect splice junctions between unannotated exons.

Our work powerfully demonstrates the feasibility of constructing a transcrip-

tome of an organism in a comprehensive, fast, and cheap way. Applying our

approach to explore the transcriptomes of less characterized organisms in an ab-

initio fashion can have a significant impact on genomics studies.

6.2 Comparing strand specific library construc-

tion methods

One of the major caveats of the work of Chapter 2 (Yassour et al., 2009), as

mentioned above, is the lack of strand specificity in the RNA-Seq data. To ad-

dress this issue we evaluated existing strand specific library construction protocols

(Chapter 3, Levin et al. (2010)). I have developed a computational framework

to estimate the performance of each protocol. It is unclear how to measure the

success of such protocols, as they di↵er greatly in the experimental work and

output, and depending on our task one can be better than the other. To address

this, the framework is comprised of a few metrics that address several aspects of

the data: (1) the complexity of the library, specifically, how many unique reads

we have, which indicates how many artifacts were introduced in the amplification

step; (2) the strand specificity of the reads which was calculated by the percent-

age of the reads mapped to the expected strand; (3) even-ness of coverage along

genes; (4) the coverage of the 5’ and 3’ ends of genes; and (5) correlation in

expression level estimations with the microarray technology. In addition to these

formal criteria, we found a substantial variation in the experimental complexity
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of di↵erent protocols.

We concluded that the dUTP protocol provided the most compelling overall

balance across criteria, followed closely by the Illumina RNA ligation protocol.

Our compendium and analysis pipeline, which are available online, are important

resources, include a general benchmarking dataset and tools for testing the quality

of future libraries, and have been used thus far by various labs around the world

(Tariq et al., 2011; Wang et al., 2011).

6.3 Annotating antisense transcripts in the bud-

ding yeast transcriptome

Once we have identified the best protocol for strand specific RNA-Seq, I went back

to explore the extent of antisense transcription in yeast (Chapter 4, Yassour

et al. (2009)). Towards this end, I have used the strand specific RNA-Seq data

from the dUTP library, generated from Saccharomyces cerevisiae cells grown to

mid-log phase. I found 1,103 putative antisense transcripts expressed in this

condition, ranging from 39 short ones covering only the 3’ UTR of sense genes

to 145 long ones covering the entire sense ORF. I focused on 402 long antisense

units (each spanning over 75% of a coding unit). In this category, I identified 224

new antisense transcripts that in previous microarray studies (Xu et al., 2009)

were either undetected or annotated as long UTRs of neighboring genes. Using

the paired reads in our data, we can distinguish between UTR extensions and

independent transcriptional units.

We are still unsure why so many genes have antisense transcripts. Could it

be that they are all side e↵ect of the sense transcription? The cell is investing a

great deal of energy and materials into transcribing these antisense unit, thus the

question of their functionality is even more interesting. To date, functional studies

have identified a regulatory role for only a few antisense transcripts (Hongay et al.,

2006; Camblong et al., 2007; Houseley et al., 2008). The diversity of lengths in our

antisense units suggests there may be more than a single underlying mechanism

for their formation and function.

Genome-wide analyses have suggested that antisense transcripts are the re-

sults of promiscuous transcription (He et al., 2008; Xu et al., 2009; Neil et al.,

2009). Our results do not support promiscuous or aberrant transcription as the

primary cause of the observed antisense transcripts. We find antisense transcrip-
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tion at only 18% of the genes. Moreover, many of the antisense units are long

and show robust sequence coverage, in contrast to what we might expect in a

noisy process. Finally, antisense transcripts are only very weakly correlated to

their neighbors, inconsistent with the leaky transcription theory.

We found that the sense transcripts corresponding to longer antisense units

are significantly enriched for key processes in S. cerevisiae, including stress re-

sponse, the di↵erential regulation of growth and stationary phase, and possibly

meiosis and sporulation. The high level of antisense expression is consistent with

the repression of these processes in fast growing yeast cells. Indeed, when we

examined the relative change in expression in sense and antisense units across

multiple conditions, we found a strong and consistent anti-correlation between

sense genes and their corresponding antisense units.

In search for a mechanistic understanding of this potential regulation, we

measured the expression levels of 67 sense and antisense pairs in the �Rrp6

and �Hda2 strains, as these genes were suggested to play a mechanistic role by

Camblong et al. (2007). Notably, we found support for the role of Rrp6 in the

regulation of antisense levels, resulting in an increase in antisense levels in the

�rrp6 mutant, and a mild decrease in sense levels. We could not demonstrate a

general e↵ect of Hda2 on the levels of sense or antisense transcripts. This sug-

gests that it may be challenging to generalize the mechanisms shown for specific

transcripts (PHO84, Camblong et al. (2007)) to all antisense transcripts.

Independent support for a potential function is the conservation of expression

and regulation of six antisense units tested across five species that have diverged

more than 150 million years ago, suggesting purifying selection.

Lastly, following our identification of several antisense units in meiosis related

genes, I was involved in a study on the transcription and translation regulation

during meiosis in yeast (Brar et al., 2012). In this work, we measured RNA-

Seq and protein production through the yeast meiotic sporulation program. We

found strong, stage-specific expression for most genes, achieved through control of

both mRNA levels and translational e�ciency. Meiotic translation is also shifted

toward non-canonical sites, including short ORFs on unannnotated transcripts

and upstream regions of known transcripts (upstream ORFs, or uORFs). This

work reveals pervasive translational control in meiosis and helps to illuminate the

molecular basis of the broad restructuring of meiotic cells.

Since our publication there has been growing evidence of antisense transcrip-

tion in fungi (Donaldson and Saville, 2012), especially in genes related to stress
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and meiosis (Chen and Neiman, 2011), compatible with our findings. As more

and more studies of antisense transcription are preformed, the debate regarding

their functionality settles and makes way to the more interesting discussion re-

garding their regulation and mechanism of inhibition. A recent study by Murray

et al. (2012) finds that antisense transcripts and their neighboring genes are in-

dependent in their regulation, inconsistent with Xu et al. (2009) but consistent

with our conclusion. Regarding their functionality, a new study from the Stein-

metz lab (Xu et al., 2011) finds that antisense transcripts assist in a complete

“shut-o↵” of the sense genes, and that this type of inhibition specifically a↵ects

low levels of sense gene expression. Furthermore, they argue that antisense tran-

scripts initiating from bi-directional promoters assist in spreading the repression

signal to adjacent genes (Xu et al., 2011). Regarding the inhibition mechanism,

several studies have found evidence that chromatin take part in this process, al-

though much remains to be discovered. Recently, Magistri et al. (2012) find that

antisense transcripts regulated their sense genes by recruiting epigenetic e↵ec-

tors (e.g., via H3K27me3 and H3K9me3), and van Dijk et al. (2011) show how

H3K4me3 plays an important role in controlling the antisense repressive activity.

To conclude, it is now clear that antisense transcripts provide an additional

layer of regulation, spanning from fungi to mammals, but the exact inhibition

mechanisms are still unclear and remain to be fully characterized.

6.4 The development and application of an assembly-

first method to characterize complex tran-

scriptomes

In Chapters 1-3 I have discussed only mapping-first approaches, which have

some caveats, mainly the requirement of a high quality reference genome, and the

di�cult task of mapping spliced reads. In our recent work studying the genome

and highly spliced transcriptome of the fission yeasts (Rhind et al., 2011), these

caveats became major obstacles. To address these challenges we turned to the

assembly-first strategy, which as explained above in details, first assembles all

the RNA-Seq reads, and then maps the longer sequences to a reference genome,

if such has been sequenced.

In the paper described in Chapter 5 (Grabherr et al., 2011) we presented

Trinity, a method for de-novo reconstruction of full-length transcripts using RNA-
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Seq assembly. Unlike existing short-read assembly tools initially developed for

genome assembly, Trinity was designed specifically for transcriptome assembly.

To this end, Trinity leverages several properties of transcriptomes in its assembly

procedure: it uses transcript expression to guide the initial Inchworm transcript

assembly procedure in a strand-specific manner, it partitions RNA-Seq reads into

sets of disjoint transcriptional loci, and it traverses each of the transcript graphs

systematically to explore the sets of transcript sequences that best represent

variants resulting from alternative splicing or gene duplication by exploiting pairs

of RNA-Seq reads.

We applied Trinity to annotate the dense transcriptome of the fission yeast

and the spliced and complex transcriptome of mouse. Trinity resolved ⇠99% of

the initial sequencing errors, determined splice isoforms, distinguished transcripts

from recently duplicated and identified allelic variants. In yeast, we identified

a large number of UTR extensions, antisense transcripts and novel intergenic

transcripts. In mouse, we identified many novel transcripts and novel exons for

reference transcripts. In addition, when applying Trinity to RNA-Seq data from

whitefly, an organism with no sequenced reference genome, we reconstructed

many full-length transcripts, including alternatively spliced variants, even in the

presence of substantial polymorphisms.

Paired-reads are important to increase the distance at which Trinity can re-

solve ambiguities. Read pairs, representing longer fragments allow us to resolve

di↵erences (e.g., two pairs of SNPs, or inclusion of two distant exons) that occur

at that distance or below. At longer distances, there is no physical unit to sup-

port alternative paths, but future RNA-Seq libraries with longer fragment size

can improve our performance greatly.

Trinity is important for both genome annotation and the study of non-model

organisms. High-quality de-novo transcriptome reconstruction, as implemented

in Trinity, featuring low base-error rates and the ability to capture multiple iso-

forms, will prove crucial to maintain acceptable levels of accuracy when char-

acterizing genes. Furthermore, genomic sequences are available for only a tiny

fraction of the enormous variety of organisms. Thus, Trinity provides an e↵ective

starting point to examine the transcriptomes of such species as well as aberrant

cancer genomes. In the year since its publication Trinity has been used in many

studies of characterizing transcriptomes, with or without a sequenced reference

genome (van Bakel et al., 2011; Zhang et al., 2012; Lulin et al., 2012; Wang et al.,

2012).
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Fig. S1. Error model. (A) Estimated error rate for each position in the read. (B) The error rate of each specific error, averaged over all positions.
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Fig. S2. Segmentation example. A visualization of the segmentation method applied on the locus chr2:776000–780000. In this example, the segmentation is
almost impossible based on the YPD data alone, but when considering the HS data, it is very clear.
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Fig. S3. Transcription validation. (A) A new transcribed element at chr1:196277–199970. (B) A transcribed pseudogene at chr15:36742–38650. (C) A novel
transcription unit at the YMR194C locus that spans both a dubious ORF (YMR194C-B) and the gene YMR194C-A.
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Fig. S4. Splicing correction example. (A) In the gene LSB3, we find an intron that is shorter than reported by SGD [Cherry JM, et al. (1998) SGD: Saccharomyces
Genome Database. Nucleic Acids Res 26:73–79]. The gray box represents the addition to the exon, according to our results. (B) The multiple sequence alignment
of this region with the original and corrected annotation of the gene LSB3 [Wapinski I, Pfeffer A, Friedman N, Regev A (2007) Natural history and evolutionary
principles of gene duplication in fungi. Nature 449:54–61]. It is clear that the added segment is highly conserved in other yeast species
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Fig. S5. Splicing validation. (A) Alternative splicing in the SUS1 gene, where, in addition to the 2 known introns, we also observe clear read-through at both
junctions. Experimental validation confirms our predictions by revealing 3 bands, 2 bands consistent with just 1 intron spliced, and a stronger band consistent
with both introns spliced out. (B) A previously uncharacterized intron from the end of the snoRNA, SNR44, to the acceptor site of its hosting intron, inside RPS22B.
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A B

Fig. S6. Quantifying expression using sequencing. (A) Distribution of estimated mRNA copies per cell in YPD. Quantitative mRNA expression levels were
estimated based on the density of reads along ORFs, with an estimate of 15,000 mRNA molecules per cell. (B) For each ORF, we computed the log2 ratio of HS
and YPD (x axis), and compare it to its log2 ratio as measured by commercial 2-dye DNA microarrays (y axis).
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Fig. S7. Absolute expression comparison to previous studies [Nagalakshmi U, et al. (2008) The transcriptional landscape of the yeast genome defined by RNA
sequencing. Science 320:1344–1349; Holstege FC, et al. (1998) Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95:717–728; Liu CL, et al. (2005)
Single-nucleosome mapping of histone modifications in S. cerevisiae. PLoS Biol 3:e328.
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Supplementary Figure 1 

Supplementary Figure 1. The 3’ split adaptor method.  

Shown are the salient details for the 3’ split adaptor method14. 
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Supplementary Figure 2 

Supplementary Figure 2. Fraction of transcript coverage. 

Shown is the percentage of bases with zero coverage (Y axis) for each gene (blue dot) in the genome, 

vs. the fraction of total reads for that gene in the pooled library. Plots are shown for each library in the 

compendium, as noted. In each case, a Lowess fit is shown as a red curve. 
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Supplementary Figure 3 

Supplementary Figure 3. Average gene coverage. 

Shown is the average gene coverage at each percentile of a gene’s length, for all genes in each library. 

Libraries are color coded as specified in the legend.  

Nature Methods: doi: 10.1038/nmeth.1491



Supplementary Figure 4 

Supplementary Figure 4. Scatter, Q-Q, and MA plots. Shown are the scatter (left panel), Q-Q (middle 

panel) and MA (right panel) plots for each library, in comparison to the control library. The scatter plot 

shows the fraction of total reads for each gene (blue dot) in the reference library (Y axis) vs. a strand 

specific library (X axis). The Q-Q plot shows the level at each quantile (rank) of expression in the 

reference library (Y axis) vs. the strand-specific library (X axis). A slope = 1 line is shown for comparison 

(red crosses). The MA plot shows for each gene (dot) the difference in expression levels between the 

reference and strand-specific libraries (Y axis) vs. their mean expression level (X axis). Red dashed 

lines — two-fold difference in expression. 
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Supplementary Figure 5 

Supplementary Figure 5. Coverage at example genomic locus. 

Shown are the genome annotations from SGD (top track, boxes with arrow heads), followed by the 

aligned read coverage in each library on each strand (maximum scale is 100 reads), for the 

Chromosome 7:  472,338-483,222 locus. Coverage is calculated only with reads from the 2.5 million 

sampled reads per library. 
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Single-end Libraries

RNA Ligation 1 24,504,932 19,188,938 19,188,938 78 15,249,242 15,249,242 62

Illumina RNA Ligation 2 48,120,669 33,843,481 16,921,741 70 28,519,438 14,259,719 59

Illumina RNA Ligation - SPRI 2 51,475,621 21,444,010 10,722,005 42 18,074,114 9,037,057 35

3' Split Adaptor 1 9,612,690 9,231,502 9,231,502 96 3,695,252 3,695,252 38

Published dUTP 1 12,216,063 7,652,683 7,652,683 63 5,140,634 5,140,634 4

Paired-end Libraries

SMART 2 5,076,555 2,868,582 57 2,543,430 50 930,686 465,343 18 81

Hybrid 2 14,788,936 5,752,937 39 5,664,015 38 2,900,346 1,450,173 20 81

NNSR 1 6,873,972 4,636,153 67 3,628,894 53 2,683,010 2,683,010 39 81

NNSR no actD 2 16,399,019 8,328,130 51 7,975,082 49 5,291,376 2,645,688 32 82

BiSulfite "S" 1 10,168,083 7,235,219 71 7,564,178 74 4,570,831 4,570,831 45 63

BiSulfite "H" 1 6,896,242 3,708,647 54 3,992,780 58 2,022,728 2,022,728 29 78

dUTP 1 13,614,820 11,895,357 87 11,689,118 86 9,222,678 9,222,678 68 58

dUTP oligo(dT) 1 9,899,691 8,512,926 86 8,590,913 87 6,580,247 6,580,247 67 48

Control 1 14,596,122 12,565,360 86 12,654,534 87 9,872,609 9,872,609 68 54

Control oligo(dT) 1 13,843,046 11,712,442 85 11,857,471 86 9,059,171 9,059,171 65 53

Supplementary Table 1: Alignment of all reads for each library in our compendium. 

Library

Library

#
Lanes

Total #
reads

# Mapped
reads

Mapped /
lane

% Mapped Mapped
uniquely

Mapped
uniquely /

lane

% Mapped
uniquely

#
Lanes

Total #
reads

Read 1
mapped non- 

uniquely

 % Read 1
mapped non- 

uniquely

Read 2
mapped non- 

uniquely

% Read 2
mapped non- 

uniquely

Paired
matches

Paired / 
lane

% Paired-
end mapped

reads

% Unique
reads
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Library total 

number of  

reads 

(sampled all 

regions)

unique 

read starts

% 

unique 

read 

starts

% 

unique 

pairs

number of 

reads on 

expected 

strand

number of 

reads on 

opposite 

strand

number of 

reads outside 

known 

annotations

total number 

of reads in 

single feature 

regions

% antisense 

(opposite 

strand)

average 

coefficient of 

variation (CV) 

for top 50% 

expressed 

genes)

genes with 

5' end 

covered

genes with 

3' end 

covered

weighted 

average of 

number of 

segments per 

gene

correlation 

to control

RMSE to 

control

correlation 

to pooled

RMSE to 

pooled

correlation 

to 

microarrays

RMSE to 

microarrays

RNA Ligation 2,500,018 922,327 37% 2,290,117 10,947 13,668 2,314,732 0.47% 1.06 59% 54% 3.16 0.80 0.99 0.90 0.75 0.83 0.96

Illumina RNA Ligation 2,500,018 962,917 39% 2,293,081 13,837 21,374 2,328,292 0.59% 1.17 60% 45% 2.61 0.86 0.87 0.95 0.64 0.80 1.05

Illumina RNA Ligation - SPRI 2,500,016 979,204 39% 2,287,502 15,207 24,742 2,327,451 0.65% 1.16 62% 49% 2.69 0.85 0.87 0.95 0.62 0.81 1.03

SMART 930,686 380,169 41% 756,529 96,080 4,750 857,359 11.20% 1.50 41% 41% 4.59 0.79 0.96 0.82 0.95 0.73 1.21

Hybrid 2,500,017 442,037 18% 44% 2,289,299 43,642 23,849 2,356,790 1.85% 1.61 59% 54% 4.39 0.81 0.93 0.89 0.73 0.70 1.27

NNSR 2,500,020 356,534 14% 51% 2,270,422 12,268 62,007 2,344,697 0.52% 2.11 44% 49% 4.40 0.62 1.51 0.78 1.29 0.57 1.63

NNSR no actD 2,500,019 591,443 24% 64% 2,273,087 51,888 62,623 2,387,598 2.17% 1.75 58% 62% 4.43 0.72 1.15 0.87 0.82 0.73 1.23

BiSulfite "S" 2,500,017 704,275 28% 78% 2,263,206 25,518 11,504 2,300,228 1.11% 1.28 51% 51% 3.52 0.79 1.03 0.90 0.77 0.73 1.21

BiSulfite "H" 2,019,595 738,479 37% 76% 1,828,045 23,254 10,544 1,861,843 1.25% 1.25 51% 50% 3.29 0.81 0.99 0.90 0.75 0.73 1.20

dUTP 2,500,019 895,698 36% 84% 2,319,635 14,609 14,320 2,348,564 0.62% 0.76 62% 73% 2.48 0.90 0.69 0.94 0.57 0.84 0.94

dUTP oligo(dT) 2,500,018 794,635 32% 81% 2,303,415 15,554 13,632 2,332,601 0.67% 0.86 58% 72% 2.54 0.89 0.78 0.92 0.74 0.82 1.03

3' Split Adaptor 2,500,016 1,042,152 42% 2,139,848 63,904 91,288 2,295,040 2.78% 0.54 75% 77% 2.29 0.68 1.21 0.88 0.89 0.80 1.19

Published dUTP 2,500,019 1,000,797 40% 2,192,118 37,033 57,559 2,286,710 1.62% 0.64 62% 61% 2.41 0.80 0.98 0.93 0.64 0.81 1.08

Control 2,500,017 1,057,315 42% 88% 1,148,156 1,167,471 17,423 2,333,050 50.04% 0.85 54% 64% 3.18 1.00 0.00 0.75 1.22 0.67 1.46

Control oligo(dT) 2,500,016 996,806 40% 87% 1,157,204 1,150,325 17,463 2,324,992 49.48% 0.90 51% 63% 3.20 0.97 0.36 0.74 1.23 0.65 1.48

Supplementary Table 2: Basic statistics and comprehensive performance measures for each library in our compendium.
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Library Advantages Disadvantages
RNA Ligation High complexity; High strand specificity Lengthy method with multiple size selection steps 

requiring large amounts of RNA; 

Uneven coverage; Single end sequencing
a

Illumina RNA Ligation Overall high quality Single end sequencing
a
; Uneven coverage; 

Low coverage of 3' ends

Illumina RNA Ligation - SPRI Overall high quality Shorter cDNAs not removed from library; 

Single end sequencing
a
; Uneven coverage; 

Low coverage of 3' ends

SMART Inefficient process -- few reads; 

Overall low quality

Hybrid Better than SMART Overall low quality

NNSR High strand specificity;

Simple library construction

Overall low quality

NNSR no actD Simple library construction Overall low quality

BiSulfite "S" Similar to standard library construction Sequence alignment issues;

Low strand specificity; Uneven coverage; 

Low coverage of 5' ends
BiSulfite "H" Similar to standard library construction Sequence alignment issues;

Low strand specificity; Uneven coverage; 

Low coverage of 5' ends
dUTP Overall high quality;

Similar to standard library construction

dUTP oligo(dT) Overall high quality;

Similar to standard library construction

a:  Not an intrinsic limitation of the protocol; with appropriate modification of the protocol, paired-end sequencing can presumably be performed

Supplementary Table 3: Summary of advantages and disadvantages of library construction methods.
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Library Time 

Required 

(days)

Total 

number of 

steps

Approx. 

Reagent 

cost ($)

Starting 

material 

used 

(RNA, ng)

Applicability 

to small RNA

Kits available?

RNA Ligation 8 19 250 1200 Yes No

Illumina RNA Ligation 5 16 240 100
b

Yes Partially (Small RNA Library Construction v1.5)

Illumina RNA Ligation - SPRI 4 12 220 100
b

Yes Partially (Small RNA Library Construction v1.5)

SMART 5 8 80 100 Yes No

Hybrid 5 13 90 500 Yes No

NNSR 4 9 90 250 Unclear No

NNSR no actD 4 9 90 250 Unclear No

BiSulfite "S" 6 19 540
a

1000
c

No Mostly (Bisulfite & Standard Library Construction)

BiSulfite "H" 6 19 540
a

1000
d

No Mostly (Bisulfite & Standard Library Construction)

dUTP 5 17 430
a

200 No Mostly (Standard Library Construction)

dUTP oligo(dT) 5 17 440
a

200 No Mostly (Standard Library Construction)

Control 5 15 430
a

200 No Standard Library Construction

Control oligo(dT) 5 15 430
a

200 No Standard Library Construction

a:  Cost is lower if individual reagents are used instead of Illumina standard library construction kit

b:  Starting material was 100 ng -- cDNA was split later for the two variants of this method (see Methods for details).

c:  Starting material was 1000 ng -- only 96 ng of 212 ng was used for reverse transcription

d:  Starting material was 1000 ng -- only 40 ng of 152 ng was used for reverse transcription

Supplementary Table 4: Comparison of technical details of library construction methods.
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Primer Name Primer Sequence

SMART tagged random primer 5’-CATTGAGCTGAACCGAGTCCAGCAGNNNNNN

5’ SMART oligo 5’-TTTCCCTACACGACGCTCTTCCGATCTrGrGrG

SMART reverse primer 5’- CAAGCAGAAGACGGCATACGACGATCTCGACATTGAGCTGAACCGAGTCCAGCAG

3’ RNA adaptor oligo 5’- AGAUCGGAAGAGCGGUUCAGCAGInvdT

Hybrid reverse transcription primer 5’- GGCATTCCTGCTGAACCGCTCTTCCGATCT

5’ Hybrid oligo 5’- CTCTTTCCCTACACGACGCTCTTCCGATCTrGrGrG

Hybrid forward 5’-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCT

Hybrid reverse 5’- CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGC

1st strand NNSR primers 5’-TCCGATCTCTNNNNNNN

2nd strand NNSR primers 5’-TCCGATCTGANNNNNNN

NNSR forward 5’- AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTCT

NNSR reverse 5’- CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCTGA

SBS11 5’-CGATCTCGACATTGAGCTGAACCGAGTCCAGCAG

Supplementary Table 5: Primer sequences.
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Supplementary Note 1 

Comparison of dUTP and Illumina RNA ligation methods 

Overall, the dUTP and Illumina RNA ligation protocols performed best across the broadest range 

of evaluation criteria, including strand specificity, measures critical for genome annotation 

(evenness and continuity of coverage), and measures critical for expression profiling.  The dUTP 

approach performed significantly better in fraction of mapped reads and evenness of coverage 

(important for genome annotation), and slightly better at expression profiling (especially based 

on RMSE measures) and 3’ end coverage.  The Illumina RNA ligation methods performed 

somewhat better for strand specificity and single-end complexity, but paired-end dUTP reads had 

excellent complexity.  The two methods were comparable for continuity and 5’ end detection, 

involve comparably simple protocols (with dUTP being slightly simpler), and require no 

specialized computational processing.   

 

Supplementary Note 2 

Monotemplate sequencing issue 

Because each of the NNSR, SMART, and Hybrid libraries has a short, identical sequence at the 

start of every read and must be sequenced at a lower cluster density, these libraries generate less 

usable sequence per lane than standard libraries with current Illumina sequencing protocols. 

For the NNSR libraries, we used a lower cluster density to resolve issues resulting from the first 

two bases being identical in each read, creating a "monotemplate."  This monotemplate issue is a 

problem for the Illumina Genome Analyzer software (v.1.5) because it uses the first two cycles 

to determine where clusters reside in an image (template generation) and this results in some 

images being "denser" than they would be given a random base distribution, i.e. 100% of the 
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clusters lighting up in the "A" image compared to 25% lighting up in the "A" image. As a result 

of this higher image density, the software is unable to find cluster locations using cross-

correlation of the pixel intensities. Lowering the cluster density alleviates this problem, but 

results in less sequence being generated than for a library without monotemplate issues loaded at 

standard cluster density. This was also a potential problem that may have reduced the fraction of 

Passing Filter bases for the SMART and Hybrid libraries, but without any special handling their 

cluster densities turned out to be somewhat lower relative to other contemporary sequencing 

runs. 

 

Supplementary Note 3 

Microarray data 

Saccharomyces cerevisiae strain BY4741 was grown to mid-log and cells were harvested by 

freezing in liquid nitrogen. Total RNA was isolated using the RNeasy Midi or mini Kits (Qiagen) 

according to the provided instructions for mechanical lysis. Samples were quality controlled with 

the RNA 6000 Nano (series II) kit for the Bioanalyzer 2100 (Agilent). Genomic DNA from 

Saccharomyces cerevisiae strain BY4741 was isolated using Genomic-tip 500/G (Qiagen) using 

the provided protocol for yeast. DNA samples were sheared using Covaris sonicator to 500-1000 

bp fragments, as verified using DNA 7500 and DNA 12000 kit for the Bioanalyzer 2100 

(Agilent). Independently sheared samples labeled with Cy3 and Cy5 were highly correlated (R> 

.97 in each of four independent hybridizations), indicating that the shearing procedure is 

reproducible and unbiased. Total RNA samples were labeled with Cy3 (cyanine fluorescent 

dyes) and genomic DNA samples were labeled with Cy5 using a modification of the protocol 

developed by Joe DeRisi (UCSF) and Rosetta Inpharmatics (Kirkland, WA) that can be obtained 
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at www.microarrays.org and as described33. Two biological replicates of Cy3 labeled RNA 

samples were mixed with a reference Cy5 labeled genomic DNA sample and hybridized on a 

two-color Agilent 4x44K S. cerevisiae array (commercial Agilent array; four to five probes per 

target gene). After hybridization and washing per Agilent instructions, arrays were scanned using 

an Agilent scanner and analyzed with Agilent’s feature extraction software version 10.5.1.1. For 

each probe, the median signal intensities were background subtracted for both channels and 

combined by taking the log2 of their ratio. To estimate the absolute expression values for each 

gene, we took the median of the log2 ratios across all probes. The experiments were highly 

reproducible; most biological replicates correlated at R = .99 and replicates with R < .95 were 

removed. Different biological replicates were combined using Quantile normalization to estimate 

the absolute expression level per gene. 

33. Wapinski, I. et al. Gene duplication and the evolution of ribosomal protein gene regulation in 
       yeast. Proc. Natl. Acad. Sci. USA 107, 5505–5510 (2010).
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Supplementary Figures⇤:

Strand-specific RNA sequencing

reveals extensive regulated long

antisense transcripts that are

conserved across yeast species

⇤
Figure captions appear in Chapter 4

98



 

Supplementary Figure 1 - Antisense reads coverage: 

units vs. sporadic

a Read coverage histograms b Empirical CDF
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Supplementary Figure 2 - Units statistics

a Antisense unit length histogram

b Cumulative distribution function (cdf) of 

antisense units vs. other units
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Supplementary Figure 5 - Expression patterns of 

antisense units and their neighboring genes
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Supplementary Figure 7 - Expression Measurements

a Comparing YPE to YPD

b Comparing YPGal to YPD

c Comparing Δrrp6 to YPD
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SUPPLEMENTARY NOTE 

Assembly of the fission yeast transcriptome 

Inchworm assembled the yeast data set into 811,364 contigs with length at least 48 bases (2*(k-

1), k=25, see above). Only 8,234 of the contigs are at least 350 bases long (approximately the 

mean insert size in our RNA-Seq library) and those comprise 13.4 Mb of total sequence. At this 

stage, 15% (660 of 4265) of the Inchworm-reconstructed, Oracle-matching, transcripts were 

recovered as falsely fused into single contigs. These mostly correspond to adjacent genes that 

overlap in their untranslated regions (UTRs), a common phenomenon in yeasts1, 2.  By examining 

the clustering of read mate-pairings, 375 of the 660 falsely-fused transcripts were automatically 

teased apart into individual full-length transcripts (see above). Chrysalis grouped all contigs into 

23,607 components and built a set of de Bruijn graphs, with a total of 24M unique k-mer nodes. 

After filtering and analyzing the graph, Butterfly outputs 27,841 linear contigs longer than 100 

bases, grouped into a final set of 23,232 components. 

 

Assembly of the mouse transcriptome 

First, Inchworm assembled the reads into ~1.9M contigs (43 Mb resides in 32,466 sequences >= 

350 bp), containing 7,346 annotated full-length transcripts. Second, Chrysalis pooled the contigs 

into 156,211 components. Finally, Butterfly reported 179,340 contigs (48,497 of length greater 

than 350bp), residing in 151,115 remaining components, fully capturing the 8,185 transcripts at 

7,749 loci at full length. 

 

Nature Biotechnology: doi:10.1038/nbt.1883



3 

 
SUPPLEMENTARY METHODS 

 

Yeast strains and growth conditions.  

Cultures were grown in the following rich medium: Yeast extract (1.5%), Peptone (1%), 

Dextrose (2%), SC Amino Acid mix (Sunrise Science) 2 grams per liter, Adenine 100 mg/L, 

Tryptophan 100 mg/L, Uracil 100 mg/L, at 200 RPM in an New Brunswick Scientific air-shaker.  

 
For glucose depletion (mid-log, diauxic shift, and stationary phase samples), overnight cultures 

were grown to saturation in 3 ml rich medium.  From the 3 ml overnight cultures, 300 ml of rich 

media was inoculated at the OD600 corresponding to 1x106 cell/ml and grown in New Brunswick 

Scientific shaking water baths.  Culture density was monitored by OD600. Glucose levels were 

monitored using the YSI 2700 Select Bioanalyzer. Cells were harvested at mid-log, diauxic shift 

(defined as the timepoint when glucose is depleted from the medium), and when growth plateaus 

by quenching them in 60% liquid methanol at -40°C that was later removed by centrifugation at -

9°C and stored overnight at -80°C.  Harvested cells were later washed in RNAse-free water and 

archived in RNAlater (Ambion) for future preparations. 

 
For heat shock, overnight cultures were grown in 650ml of media at 22°C to between 3x107 and 

1x108 cell/ml OD600 = 1.0. The overnight culture was split into two 300ml cultures and cells 

from each were collected by removing the media via vacuum filtration (Millipore). The cell-

containing filters were re-suspended in pre-warmed media to either control (22°C) or heat-shock 

temperatures (37°C). Density measurements were taken approximately one minute after cells 

were re-suspended to ensure that concentrations did not change during the transfer from 
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overnight media. 60ml of culture were harvested at 15 minutes after re-suspension by quenching 

them in 60% liquid methanol at -40°C that was later removed by centrifugation at -9°C and 

stored overnight at -80°C. Harvested cells were later washed in RNAse-free water and archived 

in RNAlater (Ambion) for future preparations. Cells were also harvested from cultures just 

before treatment for use as controls. 

 

Mouse dendritic cell isolation and tissue culture 

6-8 weeks female C57BL/6J mice were obtained from the Jackson Laboratories. Bone Marrow 

DCs were collected from femora and tibiae and plated on non-tissue culture treated plastic dishes 

in RPMI medium (Gibco Invitrogen) supplemented with 10% FBS, L-glutamin, 

penicillin/streptomycin, MEM non-essential amino acids, HEPES, sodium pyruvate, β-

mercaptoethanol, and GM-CSF (15 ng/mL; Peprotech). At day 5, floating CD11c+ cells were 

collected and sorted on MACS columns using the CD11c (N418) MicroBeads kit (Myltenyi 

Biotec). CD11c+ cells where replated at a concentration of 106 cells/ml and collected 12 hours 

post sorting.  
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SUPPLEMENTARY FIGURES AND LEGENDS 

 

 

Supplementary Figure 1. Impact of the number of reads on the oracle set.  

Shown are the numbers of S. pombe genes (a, blue) or mouse genes (b, blue) or transcripts (b, 

green) that are captured by the Oracle set at different numbers of input read pairs (x axis). The 

oracle set begins to saturate at 25M read pairs (or 50M reads) for the S. pombe RNA-Seq data 

(a), but is likely not saturated with the entire set of 53M read pairs on the mouse data set (b).  
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Supplementary Figure 2. UTR differences between Trinity transcripts and the annotated 

reference.  

Shown are the distributions of changes in UTR length between Trinity transcripts and the 

annotated reference at the 5’UTR (a,c) and 3’UTR (b,d) of S. pombe (a,b) and mouse (c,d). 
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Supplementary Figure 3. Distribution of expression levels for protein-coding and antisense 

transcripts. 

 
 Shown are the distributions of expression levels (FPKM) for coding (blue), long antisense 

(green), and intergenic (red) Trinity-assembled transcripts in S. pombe. 
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Supplementary Figure 4. Trinity identifies antisense transcription in yeast.  

Shown are examples of Trinity assemblies (red) along with the corresponding annotated 

transcripts (blue) and coverage of underlying reads (green) all aligned to the S. pombe genome 

(for graphical clarity; no alignments were used to generate the assemblies). Trinity's assembly of 

comp3099 corresponds to the predicted antisense transcript SPNCRNA.583.  
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Supplementary Figure 5. Examples for UTR exon additions in mouse.  

Shown are examples of Trinity assemblies (bottom) and the corresponding reference annotation 

(top) for (a) Sec14 (one extra internal UTR exon), (b) Tbkbp1 (one extra UTR exon at the 5’ 

end), and (c) Dicer (multiple internal and 5’ end UTR exons).  
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Supplementary Figure 6. The number of full-length transcripts reconstructed by each 

method at different numbers of input reads.  

Shown are the number of annotated full-length transcripts (Y axis) reconstructed at different 

input read numbers (X axis) for each of Trinity (red), TransAbyss (yellow), Abyss (blue), 

SOAPdenovo (green), Scripture (purple) and Cufflinks (grey) in yeast (a) and mouse (b). 
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Supplementary Figure 7. The number of full-length transcripts reconstructed by each 

method at different expression levels.  

Shown are the numbers of full-length Oracle transcripts (Y axis) reconstructed at different 

expression quintiles (X axis) by each of Trinity (red), TransAbyss (yellow), Abyss (blue), 

SOAPdenovo (green), Scripture (purple) and Cufflinks (grey) in yeast (a) and mouse (b).  
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Supplementary Figure 8. Butterfly edge pruning and path finding.  

(a,b) Shown are the two cases where we would remove an edge (respectively, see Methods). (c) 

Illustrates the progress of the path finding process. On the left we see the compacted graph, each 

node shows the beginning and end of its sequence, and its length in square brackets. On the right 

we examine 2 possible extensions for the two paths that reached node (TGC…GTA), and show 

that we have L-suffix support only for the red and purple paths, and not their chimera paths. 
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Supplementary Figure 9. The effect of the choice of alignment program on mapping-first 

transcriptome reconstruction.  

Shown are the numbers of annotated full-length transcripts (blue) and full-length fused 

transcripts (green) reconstructed by Cufflinks and Scripture, based on Blat and the latest version 

of Tophat in yeast (a) and mouse (b). 
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SUPPLEMENTARY TABLES 

 
 
Supplementary Table 1. Comparison of sensitivity of different methods on the S. pombe 

transcriptome.  

 
Listed are the number of full-length (FL) genes, the percentage of false fusions, the total number 

of contigs, the number of contigs that could be mapped to the genome, the number of genes hat 

overlap with mapped contigs, and the average number of contigs per gene.  
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Supplementary Table 2. Comparison of sensitivity of different methods on the mouse 

transcriptome.  

 
Listed are the number of full-length (FL) genes, the percentage of false fusions, the total number 

of contigs, the number of contigs that could be mapped to the genome, the number of genes hat 

overlap with mapped contigs, and the average number of contigs per gene.  
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Supplementary Table 3. Base error stats for Trinity transcripts.  

 
Listed are the number of aligned bases, matches, mismatches, insertions and deletions. 
 
 S. pombe Mouse 

# Full-length Trinity Transcripts 4230 8178 
# aligned bases 8942895 21400061 
# matching bases 8942241 21397375 
# mismatches 654 2686 
Mismatch rate 7.31e-05 1.26e-04 
# genome inserted bases 299 1551 
Genome inserted base rate 3.34e-05 7.25e-05 
# transcript inserted bases 528 2875 
Transcript inserted base rate 5.90e-05 1.34e-04 
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  שימוש תוך הטרנסקריפטום אפיון

מתקדמות ריצוף בטכנולוגיות  
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הוגש לסנאט האוניברסיטה העברית, בירושלים  

2012יולי   



 הגן שעתוק של לוואי תופעת רק ולא פוקציונלים שהם דעתנו את שמחזק מה, קרובים

.המקודד  

 רצף בהעדר אפילו, ומשוחברים מורכבים טרנסקריפטומים לאפיון שיטה מציגה אני, לבסוף

  גרבהר ומנפרד האס בריאן עם יחד פותחה והיא, Trinity נקראת זו שיטה. הגנום

)Brian!Haas,!Manfred!Grabherr( מעין המילים מכל מרכיבים אנו, זו בשיטה. הברוד ממכון 

 אנו זאת לעשות כדי. מרוצפות במילים כולם שמכוסים, ארוכים רצפים ליצר במטרה פאזל

. א"רנ להרכבת אותם ומתאימים), DNA!assembly( א"דנ של הרכבה בעקרונות משתמשים

הרכבה" נקראת זו גישה , עצמן לבין בינן המילים את מרכיבים אנו שראשית כיוון", תחילה-

 מתגברים אנו זו בשיטה. רוצף והוא במידה, לגנום הארוכים הרצפים את ממפים ולבסוף

 שונים איזופורמים לאפיין מצליחים וכן השחבור בצמתי שמקורן המילים מיפוי בעיית על בנקל

 הפשוט בטרנסקריפטום החל, שונים טרנסקריפטומים אפיינו, זו שיטה בעזרת. במלואם

. העכבר של רבות והמשוחבר המורכב בטרנסקריפטום וכלה האופים שמר של והצפוף

 גנום כיום לו שאין יצור), Bemisia.tabaci( הטבק עש של הטרנסקריפטום את אפיינו, בנוסף

. כיום הידועים החלבונים למאגר שקיבלנו החלבונים את ווהשוונ, מרוצף  

, RNAASeqלסיכום, בעבודה זו אני מציגה כלים חישוביים לאפיון הטרנסקריפטום מנתוני 

שניתן להפעילם על מגוון אורגניזמים, בין אם רצף הגנום שלהם ידוע ובין אם לאו. בנוסף, 

השתמשתי בכלים אלו כדי ללמוד על בקרת השעתוק בשמרים, תוך דגש על זיהוי גני 

 , ובמיוחדלאפיון טרנסקריפטוםאנטיסנס אשר מבקרים גנים מקודדי חלבון. שיטות חישוביות 

 של וכן, חדשים יצורים של מחקרל פותחות צוהר קיים גנום ריצוף לע תומסתמכ אלו שאינן

 רקמות של רבים במקרים למשל כמו, בעבר שרוצף מזה שונה הקיים הרצף בהם תאים

.סרטניות  



 הטרנסקריפטום של ריצוף למשל כמו, חדשים גנומיים למחקרים צוהר פתחו אלו טכנולוגיות

ב השתמשו המחקרים . מרבית!(RNAASeq)השלם - RNAASeq מדוייקת מדידה לשם בעיקר 

 הבנתנו ושיפור!(splice!isoforms)!חלופיים איזופורמים של זיהוי, הגנים ביטוי רמות של יותר

, הגנים רצף של מוקדם ידע על מסתמכים אלו ממחקרים רבים אבל. הגנים גבולות של

 חדשים גנים לזהות יכולתנו את מגבילים וכך, כולו הגנום ריצוף על או הגנום פני על מיקומם

.עדין רוצף לא שלהם שהגנום יצורים ולחקור  

  של לאנליזה וכלים טכנולוגיות פיתחתי בהם מחקרים אסופת מציגה אני זו עבודה במהלך

 ועד האופים משמר החל, שונים באורגניזמים אלה כלים של , ואפליקציהRNAASeqניסויי 

.עכבר  

 של זה למשל כמו, יחסית פשוטים טרנסקריפטומים לאפיון חדשה שיטה מציגה אני, ראשית

מיפוי" הנקראת זו בגישה). 2 פרק( הגנום של קיים ריצוף על המסתמכת, האופים שמר -

 בגנום אזורים מאפיינים מכן ולאחר, לגנום הקצרות המילים את ממפים אנו", תחילה

 חדש אלגוריתם פיתחנו גם זו בעבודה. א"לרנ שועתקו ולכן, אלה מילים ידי על המכוסים

 אזורים כמה פני על שמחולקות מילים מיפוי בעית על להתגבר כדי, לגנום המילים למיפוי

 . כך!(splice!junction)משוחבר גן של בצומת הנמצאת מילה של במקרה למשל כמו, בגנום

 צמתי 305 מתוך 254 לאפיין וכן, המבוטאים מהגנים 85% במלואם לשחזר הצלחנו

 מעט חופפים אשר, שכנים גנים בין להפריד להצליח היה הגדולים האתגרים אחד. השחבור

 שיטה לחפש פנינו, זה אתגר על להתגבר כדי. שונים גדילים על שוכנים אך, הגנום פני על

.בניסוי שירוצף זה יהיה המשועתק הגדיל רק שבה  

הברוד ממכון לוין ושוע'ג עם פעולה שיתפתי, 3 בפרק המוצגת בעבודה  

(Joshua! Levin,! Broad! Institute) תוך, א"רנ לריצוף האידאלי הפרוטוקול את למצוא כדי 

 שקיבלנו הספריות כל להשוואת חישובית תשתית פיתחתי אני. המשועתק הגדיל על שמירה

 שיקללנו כאשר. השונים לשימושים, ספריה כל של איכות המודדים קריטריונים הגדרת ידי על

הפרוטוקול המייטבי  את מצאנו, ספריה כל ליצור הנדרשת הניסויית העבודה כמות את גם

.זה במכון הניסויים בכל מאז , והוא הפרוטוקול הסטנדרטיRNAASeqלספריות   

 של הטרנסקריפטום אפיון של המקורית למשימה חזרתי, האידאילי הפרוטוקול מציאת לאחר

 בין בקלות להבדיל יכולתי, המשועתק הגדיל על רק נתונים בידי כשהיו כעת. האופים שמר

 לגנים חופף באזור המשועתקים, אנטיסנס גני של רבים מקרים לזהות וגם, שכנים גנים

כ גיליתי). 4 פרק( השני בגדיל רק, לחלבון מקודדים  שעתוק עם וןחלב מקודדי גנים 225-

 עם התאים של להתמודדות קשורים מהם שרבים מצאתי אלו גנים וכשבחנתי, השני בגדיל

 גילינו, שונים בתנאים אלו גנים ביטוי של בניתוח). הלאה וכן במזון חוסר, חום( עקה תנאי

 שהאחד מאד שיתכן כך, האנטיסנס ביטוי לבין המקודד הגן ביטוי בין הפוכה התאמה שיש

 שמרים מיני בחמישה שמורים הללו האנטיסנס מגני חלק כי מצאנו, בנוסף. השני את מבקר



תקציר  

 

 הרכיבים כל ליצירת המתכונים את ומכיל) הגנום( א"הדנ ברצף אגור שלנו התורשתי המידע

 המרכזית התפיסה לפי. גן ונקרא בגנום מסויים באזור נמצא כזה מתכון שכל כך, התא של

ל משועתק הגן של א"הדנ, הביולוגיה של !שליח א"רנ - (messenger! RNA),!מכן שלאחר 

.בו הפעולות מרבית את ומבצעים, התא של הבניין אבני הם החלבונים. לחלבון מתורגם  

 עדין אך, הגנים אותם את מכילים ולכן, בדיוק הגנום אותו את מכילים החי ביצור התאים כל

 כתגובה או, שונות ברקמות תאים של בתפקיד והן בצורה הן משמעותיים הבדלים ישנם

 נתון רגע בכל שיופעלו הגנים בחירת ידי על מבוקרים אלו מהבדלים מרבית. שונה לסביבה

.השעתוק בקרת נקראת זו ובקרה  

 אנחנו היום אבל, לחלבון תורגמו והם במידה רק גנים נקראו א"בדנ אזורים, היסטורי באופן

 דוגמא. כלל לחלבון מקודדים ואינם  א"הרנ ברמת שמתפקדים גנים של נוסף סוג מכירים

ה גני הם זה מסוג לגנים , חלבון מקודדי לגנים בחפיפה נמצאים , אשר(antisense)אנטיסנס  -

 לירידה לגרום יכול הוא, א"לרנ משועתק האנטיסנס גן כאשר. א"הדנ של השני בגדיל רק

.המקודד הגן של השעתוק ברמת  

 את לאפיין הוא הראשונים הצעדים אחד, שלו הגנום רוצף עתה שזה אורגניזם לחקור בבואנו

 החלבונים אוסף את לחזות גם נוכל כך), כאחד מקודדים ולא מקודדים( לו שיש הגנים כל

 וגם, הגנים של המדויק המיקום את לדעת נרצה, אידיאלי באופן. זה ביצור הפוטנציאלים

ראשית היא ביותר הפשוטה המשימה אך, מבוטאים הם וכיצד מדוע, מתי להבין  

 האופים שמר כמו( פשוטים אאוקריוטיים ביצורים. בגנום מיקומם את לאפיין

(Saccharomyces!cerevisiaeאינם ומרביתם, הגנום פני על רבה בצפיפות ממוקמים גנים, ה 

 כך, מהגנום מאד קטן חלק מהווים הגנים, זאת לעומת, . ביונקים!(spliced)משוחברים

 מיקום מציאת מאד מקשה זו עובדה. גנים מכיל הגנום מרצף אחוז שני רק, למשל שבאדם

 אך, חדש אורגניזם לחקר בדרך ראשון צעד רק הוא הגנום ריצוף ולכן, הרצף מתוך רק הגנים

.נוספים משמעותיים צעדים נדרשים  

 בתא שיש א"הרנ מולקולות אוסף בחינת היא, המשועתקים הגנים כל לאפיון נוספת דרך

 אאוקריוטי יצור של הטרנסקריפטום אפיון). התא של הטרנסקריפטום גם נקרא זה אוסף(

!א"דנ בשבבי שימוש נעשה ובעבר, מאד מאתגרת משימה היא (tiling! microarrays)!או 

!א"הרנ מתוך קצרים קטעים בריצוף (Expressed!Sequenced!Tags)! גישות. זו מטרה לשם 

 בשנים. וגן גן כל עבור רבה משאבים השקעת דורשות או ידוע גנום רצף על מסתמכות אלו

!הנקראות מתקדמות ריצוף טכנולוגיות פותחו האחרונות “next! generation! sequencing”!

!highAthroughput“או sequencing”!מליוני עשרות לרצף לנו מאפשרות אלו . טכנולוגיות 

. תקדים חסרת ובמהירות נמוכה בעלות, בודדת א"דנ מדוגמת!(reads)!קצרות מילים  
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