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Abstract

The DNA in our cells contains our genetic hereditary information, and is literally
the blueprint of our body. The functional units of the genome are regions of
continuous DNA sequence, and are called genes. According to the Central Dogma
of Biology, the DNA sequence of the gene is transcribed into a messenger RNA
(mRNA), which is in turn translated to proteins, which perform most tasks in
the cell.

All the cells in an organism share the same DNA, but there are dramatic mor-
phological and functional differences between cells in various tissues and under
different conditions. Many of these differences are mediated by regulation that
determines which genes are “turned on”.

(Classically, regions in the DNA were considered as genes only if they encode
proteins. Today, regions in the DNA that are transcribed to mRNA but do not
encode proteins, and function at the RNA level are also considered genes, and are
called non-coding RNAs. Antisense transcripts are a specific type of non-coding
RNAs, that overlap a protein-coding gene on the opposite DNA strand. In this
context, these are called the antisense and sense transcript, respectively. When
the antisense gene is transcribed, it can down-regulate the expression of the sense
gene.

One of the first steps in understanding a newly sequenced organism is to
annotate its genes, which will enable us to predict its repertoire of proteins.
Ultimately we would like to annotate the genes, find their genomic position, and
understand when, why and how they are turned on and off. The simplest task is
to first identify their genomic position. In some simple eukaryote organisms (like
the budding yeast), the genome is very dense with genes, and the vast majority
of them are not spliced. In mammals, however, the genes comprise an extremely
small part of the genomic sequence. For example, in humans only 2% of the
genomic sequence is protein coding, making the task of finding the genes in the

sea of the genomic sequence far from trivial. Thus, sequencing the genome is

v



only the first step in our journey, and additional steps are required for better
understanding an organism. One approach to characterize all transcribed genes
is to examine the collection of mRNA molecules in the cell (also known as the
cell’s transcriptome).

Experimentally defining the complete transcriptome of eukaryotic organisms
has traditionally been a challenging task, most commonly using tiling microarrays
or sequencing Ezpressed Sequenced Tags (ESTs). In recent years new sequencing
technologies ( “next generation sequencing” or “high-throughput sequencing”) have
emerged. These technologies allow us to take a single sample and sequence tens
of millions of short reads, at unprecedented high speed and low cost. These tech-
nologies open up intriguing possibilities in studying other aspects of the genome,
like sequencing the entire transcriptome (an assay called RNA-Seq). Most stud-
ies have used RNA-Seq to quantify the expression levels of known genes, identify
splice isoforms and refine gene boundaries. However, many studies depend on
an existing annotation or sequenced genomes, limiting the ability of discovering
novel transcripts and studying diverse organisms.

In my dissertation I present a series of studies on the development of technolo-
gies and tools for RNA-Seq analysis and their application in organisms ranging
from yeast to mouse. I focus on different approaches I have developed for tran-
scriptome reconstruction, from mapping-first ones that rely only on an available
genome sequence, to Trinity, a method for de novo assembly of full-length tran-
scripts without requiring a sequenced genome. In addition, I describe systematic
approaches to assess the quality of RNA-Seq experiments for annotation and ex-
pression quantification, and how I use them in a comparative study on library
construction methods for strand specific RNA-Seq.

Finally, I show how these approaches scale to organisms from yeasts to ver-
tebrates, helping in genome annotation of newly discovered organisms from the
Schizosaccharomyces clade, the identification of extensive regulated long anti-
sense transcripts that are conserved across yeast species, transcriptome analysis
in the Bemisia tabaci whitefly, for which the genome sequence is not available,

and for the discovery of alternatively spliced isoform in mouse.
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Chapter 1

Introduction

1.1 Central Dogma of Biology

The DNA in our cells contains our genetic hereditary information, and is literally
the blueprint of our body. The DNA is a polymer of four types of nucleotides:
adenine, cytosine, guanine and thymine (marked briefly “A” “C” “G” and “T”
respectively). The functional units of the genome are regions of continuous DNA
sequence, and are called genes. According to the Central Dogma of Biology, the
DNA sequence of the gene is transcribed into a messenger RNA (mRNA), which
is in turn translated to proteins. The DNA has two strands, of complementary
sequence, and the location of each gene in the genome includes both its strand
and its position in the genome. This will determine the sequence that encodes the
protein. The proteins perform most tasks in the cell. For example, they detect
extra-cellular signals, replicate the DNA in preparation for cell division, regulate
which genes will be “turned on”, transcribe the genes, and so on.

All the cells in an organism share the same DNA, but there are dramatic mor-
phological and functional differences between cells in various tissues and under
different conditions. Many of these differences are mediated by regulation that
determines which genes are “turned on”.

The DNA region of a gene has a few defined characteristics, and can be divided
into several segments (Fig. 1.1). The region that encodes the protein is called
the Open Reading Frame (or ORF) of the gene. During translation, each DNA
triplet (a codon) is translated into one amino acid. The sequence of amino acids
makes a protein. Although the gene is a consecutive region on the genome, there
are regions in it that following transcription are cleaved out, and are not part

of the ORF. This process is called splicing, the regions that are spliced out are
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Figure 1.1: The Central Dogma of Biology and the gene structure. Ac-
cording to the Central Dogma of Biology, the DNA sequence of a gene is first
transcribed to mRNA, then translated into a protein. In eukaryotes it is ex-
ported out of the nucleus after transcription and translated into a protein. The
gene is comprised of several segments. The promoter (light blue) is the regu-
latory sequence to which transcription factors, and the RNA Polll bind. The
Open Reading Frame is divided between a few exons (here in orange, yellow and
green), interleaved by introns (light gray) which are spliced out. Flanking the
ORF there are untranslated regions (UTRs, dark gray), which are transcribed to
mRNA and exit the nucleus, but are not translated.
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Figure 1.2: Alternative splicing. A single gene can give rise to several proteins
using the alternative splicing process. This is done by choosing which exons (here
in orange, yellow, green and blue) will be part of the final mRNA sequence, thus
translated. Here I show three protein variants from a single gene with four exons.

called introns, and the regions that remain and will be a part of the ORF are
called exons. The process of choosing which gene segments will be spliced out,
thus which will compose the ORF, enables several proteins to be encoded in a
single gene. This process is called alternative splicing, and each such alternative
transcript is called a splicing isoform (Fig. 1.2).

In addition to the ORF, the transcribed region of the gene also contains
additional flanking sequences, which are not translated, but carry some regulatory
information. These regions are called the Un-Translated Regions of the gene, or
the UTRs (Fig. 1.1).

1.2 Transcription Regulation & DNA Packing

The process of expressing a gene to its protein product is regulated at many
points, including how accessible is the gene for transcription, the rate of tran-
scription, mRNA degradation rate, initiation of translation, translation rate,
post-translation modifications, etc. Keeping this complex picture in mind, tran-

scription initiation plays a major role in the regulation of gene expression. For



this to occur, a complex of proteins, known as the RNA polymerase II, has to
bind to the transcription initiation site of the gene, and then to change to the
right conformation to initiate the transcription. These steps are regulated by
several processes.

Transcription factors are typically DNA-binding proteins that recognize spe-
cific sites in the DNA sequence (usually based on specific words that occur there).
These factors either serve to recruit the RNA polymerase complex to the gene,
inhibit such recruitment, or affect the rate by which the bound complex initiates
transcription. Transcription factors are essential elements in modulating the ex-
pression of genes. Changes in the protein levels of transcription factor, or their
state (i.e., post-translation modifications) can lead to changes in the expression

of their target genes.

DNA Packing

The chromosomal DNA molecule of eukaryotic organisms is organized at several
structural (3D) scales (Fig. 1.3). At the primary structure, chromosomal DNA is
packed around nucleosomes, protein complexes that serve as beads around which
the DNA is wrapped. A prototypical nucleosome is a complex of eight histone
proteins, containing two copies of histones H2A, H2B, H3, and H4. About 147bp
of DNA are wrapped around a single nucleosome forming slightly less than 2 turns
(Luger et al., 1997). The position of the nucleosomes can serve a regulatory role
by influencing the accessibility and hence activity of other proteins, most no-
tably transcription factors and the transcription machinery (Ehrenhofer-Murray,
2004). Nucleosome positions can thus have a critical impact on transcriptional
regulation and gene expression. Extensive recent work showed that nucleosome
locations are determined by combination of several forces. First, certain DNA
sub-sequence are preferable for wrapping around nucleosomes while others are
rigid and exclude nucleosomes (Lowary and Widom, 1998; Anderson and Widom,
2001; Segal et al., 2006; Field et al., 2008; Mavrich et al., 2008). These constraints
combined with the minimal distance between adjacent nucleosomes determine
much of the nucleosome organization. Second, there are chromatin remodeling
proteins that actively move nucleosomes to less preferable locations or evict them
(Rando and Ahmad, 2007; Whitehouse et al., 2007). Finally, other proteins, such
as transcription factors, compete with nucleosomes on the binding in particular

sites.
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Figure 1.3: The DNA sequence and Chromosomal packing. Adapted from
the National Human Genome Research Institute. The DNA sequence comprises
of four nucleotides (adenine, cytosine, guanine and thymine), and has the 3-
dimensional structure of a double helix. At the basic level, the DNA is packed
around nucleosomes, which are histone protein complexes. The structure of the
DNA wrapped around the nucleosomes is then further compacted and condensed
to fit the small volume of the cell’s nucleus.



1.3 Coding and non-coding genes

Classically, regions in the DNA were considered as genes only if they encode
proteins. Until the early 80s there were two main additional classes of genes,
that do not encode proteins and are functional at the RNA level. These are
the transfer RNA (tRNA) and ribosomal RNA (rRNA) genes, involved in the
translation process. In the recent decade there has been a tremendous increase
in the discovery of functional RNA molecules, which are called in general non-
coding RNAs, as they do not encode proteins (Bertone et al., 2004; Carninci
et al., 2005; Rinn et al., 2007; Guttman et al., 2009). These RNA molecules
can function through a variety of mechanisms, and can be folded into a three
dimensional structure, which facilitates their function, and also increases their
stability. For example, tRNAs carry amino acids to their corresponding codons
in the mRNA. Each tRNA molecule folds into a structure that binds the codon on
one side, and the relevant amino acid on the other. Some non-coding RNAs act
as scaffolds to recruit the assembly of proteins, like the TERC RNA that serves
as the template for the telomerase complex (Zappulla and Cech, 2006). Others,
like the miRNA class, form a RNA-RNA double strand by hybridizing to their
target mRNA (He and Hannon, 2004). This is one way to post-transcriptionally
regulate the activity of a gene, as this can either (a) result in the degradation of
these RNA molecules; or (b) prevent the mRNA from being translated.
Antisense transcripts are a specific type of non-coding RNAs. As explained
above, the DNA has two strands, and each gene is located on a specific strand
of the sequence. In some cases, we can find a non-coding gene that overlaps a
protein-coding gene, only on the opposite strand. In this context, these are called
the antisense and sense transcript, respectively. When the antisense gene is tran-
scribed, it can down-regulate the expression of the sense gene. There are a few
mechanisms suggested for this down-regulation (Faghihi and Wahlestedt, 2009):
(1) through the formation of a RNA-RNA double strand, as explained above
(Fig. 1.4); (2) the machinery that transcribes the antisense genes physically in-
terferes with the sense transcription machinery and prevents it from transcribing
the sense gene, hence less mRNA of the sense gene is available for translation;
and (3) transcription of the antisense gene leaves histone marks on the chromatin

that repress the transcription of the sense gene.
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Figure 1.4: Antisense transcription. Adapted from Robinson (2004). The
Central Dogma of Biology is presented for the sense gene as it is transcribed to
mRNA (blue) and then translated to protein (purple). The antisense RNA (red)
can form a RNA-RNA double strand, and prevent the sense gene from being
translated. Other forms of down-regulation include increased mRNA degrada-
tion, and transcription interference of the sense gene.

1.4 Gene Discovery

One of the first steps in understanding a newly sequenced organism is to annotate
its genes, which will enable us to predict its repertoire of proteins. By comparing
the predicted proteins to all known proteins, we can better understand how this
organism lives, regulates its behavior, and copes with different stress conditions.
This comparison can also teach us which components are unique to this organism,
and can shed some light on different mechanisms that have not been modeled
before.

Ultimately we would like to annotate the genes, find their genomic position,
and understand when, why and how they are turned on and off. The simplest task
is to first identify their genomic position. In some simple eukaryote organisms
(like the budding yeast), the genome is very dense with genes, and the vast
majority of them are not spliced. In mammals, however, the genes comprise an
extremely small part of the genomic sequence. For example, in humans only 2%
of the genomic sequence is protein coding, making the task of finding the genes
in the sea of the genomic sequence far from trivial. Thus, sequencing the genome

is only the first step in our journey, and additional steps are required for better



understanding an organism.

Although genomes and the genes they contain differ greatly between different
organisms, some common rules are universal (except for few special organisms).
All open reading frames share some characteristics that can help us locate them.
There are special codons to specify the beginning and end of the proteins, these
are called the start- and stop- codons, respectively. There are computational
approaches that use this knowledge of the special codons, and other properties
of codons (like conservation) to discover the genes, given the genomic sequences
(Stanke and Waack, 2003; Majoros et al., 2004).

Even if we have a good computational tool for identifying the ORF's, there are
still caveats to this approach: (1) low specificity, since it finds many sequences
that have the start and stop codons but are not transcribed (spurious ORF's), at
least in the examined conditions; (2) the sensitivity of finding single exon genes
is fair, but it decreases dramatically at the multi exon genes; (3) this approach
will fail to identify non-coding genes, as it searches for ORFs; (4) it finds only
the ORF and not the entire gene sequence that includes the UTRs; and (5) we
need to have the reference genome sequence of our model organism to perform
this search.

A different approach is to examine the collection of mRNA molecules in the
cell (also known as the cell’s transcriptome). Most commonly this is done by either
tiling microarrays or sequencing the transcriptome, and in both cases the RNA

sequences are first transformed to their complementary DNA sequence (cDNA).

Microarrays

Building on existing reference sequence and properties of hybridization (the pro-
cess by which one-stranded DNA molecules bind to the complementary sequence)
allowed the design of DNA microarrays to detect the presence and quantity of
specific mRNA sequences (Bertone et al., 2004; David et al., 2006). Each sequence
on the array is called a probe, and we can design the array to hold overlapping
probes for the genomic region of interest at a given resolution. The cDNA se-
quences are then hybridized with the array. Probes of the array that complement
the sequences in the cDNA will by hybridized and identified. The major caveat
of this technology is that we still rely on having a sequenced reference genome.
We need to know the sequences of the regions we are interested in for designing

the array.



Transcriptome Sequencing

In the sequencing approach we harness existing DNA sequencing technologies
to sequence the cDNA library. In a pioneering work in the early 90s, Craig
Venter and colleagues describe how they sequence parts of a human cDNA library
(Adams et al., 1991). These sequence parts are called Expressed Sequence Tags
(ESTs).

Although only parts of the cDNA are sequenced, with sufficient amount of
ESTs and a reference sequence of minimal quality, we can annotate the coding
regions of a genome. However, sequencing ESTs is a very long and laborious
process. Each cDNA part is inserted into a bacterial clone, and each clone is
grown to a colony, so we have an amplified and homogenous population. Finally,
each colony is sequenced using primers for the known flanking sequences of the

bacterial clone, generating sequences in the range of a few hundred basepairs.

1.5 Next Generation Sequencing

In recent years new sequencing technologies ( “next gemeration sequencing” or
“high-throughput sequencing”) have emerged. These technologies allow us to take
a single sample (small amount of liquid with DNA fragments) and sequence tens
of millions of short reads, at unprecedented high speed and low cost. Depend-
ing on the particular technology, these reads represent 30-300bp off the end of
the fragment or off the two ends of the fragment (paired-end sequencing). The
main breakthrough in this technology is that the amplification and sequencing
is done in parallel for all fragments. The double stranded DNA sample is first
fragmented into ~300bp long pieces, and then these pieces are spread on a glass
surface. The amplification is performed while the fragments are connected to
the glass, and generates many copies of the same fragment, in close proximity
to the location of the original fragment (these are referred to as clusters). The
clusters are homogenous, as they contain many copies of the same fragment, and
if they are distinct enough, the sequencing machine can sequence all the clusters
simultaneously.

In this dissertation I focus on the Illumina (Solexa) platform that currently
provides sequenced reads of length 32-150bp. The most common application of
[lumina sequencing is to derive a host of sequenced reads from a DNA sample of

interest, identify them by mapping to a finished reference genome, and deriving



biological insight relevant to the measured sample. For example, by re-sequencing
the DNA of specific individuals we can find the differences from the reference
genome (Nielsen et al., 2011). Moreover, they open up intriguing possibilities
in studies of other aspects of the genome. For example, as we are interested
in characterizing the transcriptome we can sequence the ¢cDNA library, which
represents all the mRNA molecules present at our sample. This assay is called
RNA-Seq, and can be used not only to characterize the transcripts, but also to
quantify the expression levels of all genes and their different splicing isoforms
(Fig. 1.2).

There are two major approaches in analyzing high throughput sequencing
data: (1) mapping-first and (2) assembly-first (Fig. 1.5).

Mapping-first approach

In the mapping-first approaches, we rely on having a sequenced reference genome
at some minimal quality. The first step is to find the genomic location that each
read originated from. This is done by mapping the read sequences to the given
genomic reference, and can be performed by a variety of aligner methods (Kent,
2002; Langmead et al., 2009; Li and Durbin, 2009). The second step is to generate
coverage plots, that represent how many reads originated from each position in
the genome. Finally, we can examine these coverage plots to identify patterns

associated with transcribed regions (Fig. 1.5).

Assembly-first approach

Assembly-first approaches do not rely on a sequenced reference genome. Instead,
they start by assembling all sequenced reads. After we have assembled the reads,
if we do have a sequenced reference genome, we can map the assembled sequences
to it. We can then examine the sequences assembled by predicting their protein

sequences, and comparing to known genes.

DNA Assembly

There is a long history of DNA assembly methods, as part of the effort to sequence
many genomes (Zerbino and Birney, 2008; Gnerre et al., 2010; Li et al., 2010).
All these methods build on the initial concept of using de-Bruijn graphs for DNA
assembly originally suggested by Pavel Pevzner (Pevzner, 1989). There are two

main challenges in this field: (1) how to generate the enormous de-Bruijn graphs

10
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Figure 1.5: Transcriptome assembly approaches. (a) In the mapping-first
approach the reads (blue rectangles) are first mapped to the reference genome,
and together with the mapping of the spliced reads, coverage plots are calculated.
These functions hold the number of reads mapped to it for each position in the
genome. From the plots we can reconstruct the transcript and its structure. (b)
In the assembly-first approach, the reads are first assembled by finding reads
that share overlapping sequences (see insert). The assembled transcript is then
extracted and in the presence of a sequenced reference genome, it can be mapped
to reconstruct its structure.
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that represent our data; and (2) once the graphs are built, how to extract a
single coherent long DNA sequence. The first challenge is usually solved by using
extremely high memory computers (e.g. with 512GB memory), which allows only
established institutes designated for this task to perform such assemblies. To
address the second challenge, there are many methods that traverse the graphs,
and output their most probable sequence (Zerbino and Birney, 2008; Gnerre et al.,
2010; Li et al., 2010).

RNA assembly

The task of assembling RNA-Seq reads shares these challenges, but adds on new
challenges. As we have tens of millions of reads, the challenge of generating the
graphs also exists in RNA-Seq assembly methods, and can be relaxed by using
heuristic approaches. The underlying assumption in RNA-Seq assembly is that
ideally, each gene or gene family should assemble separately. This implies there
is no single enormous graph, and the challenge is to accomplish this, even if we
do not know a priori which read originated from which transcript. One way to do
this is to first use a greedy method for the crude assembly of the reads to linear
sequences, and then combine these sequences based on their similarity (Grabherr
et al., 2011). Another approach, in the case we have a sequenced reference, is to
first map the reads to the genome and then assemble them based on this mapping
(Trapnell et al., 2010; Guttman et al., 2010).

Finally, assembling RNA-Seq reads is different from assembling DNA-Seq
reads, for additional two reasons: (1) We do not expect uniform coverage of
the genome, as we have about four orders of magnitude difference in the expres-
sion levels of genes; and (2) In DNA assembly we expect to have a linear assembly
graph (except for repetitions). In RNA assembly, the different isoforms will gen-
erate non-linearity in the assembly graph, and unlike in the DNA case, there is
no single right answer, as we would like to capture all possible transcripts.

There is a tradeoff in choosing between the mapping-first and the assembly-
first approaches, as each approach has its pros and cons (Haas and Zody, 2010).
First and foremost, mapping-first methods require a sequenced reference genome.
In addition, mapping-first approaches heavily rely on the software for mapping
the short reads to the genome. There are a few challenges in aligning the reads
to the genome, including handling tens of millions of reads, taking into account
that some reads might originate from a few genomic loci, and doing all this in

an efficient manner. In addition, there can be discrepancies between the read-

12



and the reference sequence. On the one hand, sequencing is known to introduce
errors (roughly, at a ~0.1%-1% rate depending on the technology), thus the
sequence outputted by the sequencing machine might not be accurate. On the
other hand, there is no true reference, as there is some level of diversity in our
sample and not all cells in our sample have the exact same reference sequence.
For example, there could be a single nucleotide polymorphism (SNP) in one of
the genes, and while the majority of our sample, and the reference sequence,
have a “T” in that position, a non-trivial portion of our sample has “C” there.
When we try to map a read with a “C” to this position, we would count this
position as a mismatch, while it could just belong to the second, less frequent
variant. Finally, mapping the reads that originate from the splicing junction (also
referred to as spliced reads) is difficult, as we do not know the position within the
read where this splicing occurs. The way current aligners handle this problem is
by examining all reads that have not been mapped in full, and mapping pieces of
them in the hope to find that different pieces would map to the different exons.
The problem of mapping spliced reads has become more and more relevant, as
the reads are getting longer we observe reads that have up to 4 splice junctions
within their sequence. However, if we rely on currently known annotation, we
can align the RNA reads to all possible transcripts, thus overcome this problem
but introduce a new challenge of assigning each read to a single transcript. To
conclude, the mapping first approach relies on a high quality sequenced reference
genome, and performs well if we rely on known annotations or study a relatively
simple transcriptome (not too spliced).

On the other hand, although the assembly-first approach does not rely on a
sequenced reference genome, it has other caveats. The assembly process itself is
challenging, as we do not know a priori which reads originate from which tran-
scripts. Ideally, we would divide our read set into groups, each group corresponds
to a transcript, and assemble all reads within a group. Instead we have to as-
semble all the tens of millions of reads as a single group, and in theory each gene
(or gene family) could assemble separately. In addition, taking into account the
orders of magnitude difference in transcript abundance and the sequencing errors
discussed above, we are faced with a new challenge. The erroneous versions of
some highly expressed genes are more abundant than the lowly expressed genes in
our sample. The assembly method should be able to tell these two cases apart, by
filtering all the sequencing errors, considering the abundance of their alternative

variants. An additional advantage of the assembly-first method, is that if we do
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have a reference genome sequenced, mapping the longer sequences is much easier,
and can overcome many splicing junctions. To conclude, the assembly-first ap-
proach is appropriate if the reference genome is fragmented, or not sequenced at
all. In addition, it has a great added value in studying complex, highly spliced,
transcriptomes, and in cases where we do not rely on current annotations. Such
ab-initio work is of great importance to the annotation of genomes for species
on which we know relatively little or where the genome has massive genomic

aberrations and rearrangements, as occurs in many tumor tissues.

1.6 Research Goals

The advent of high-throughput sequencing opens new opportunities to study tran-
scriptome profiling and gene expression in a genome-wide and unbiased manner.
Harnessing the full power of these technologies poses significant analytical chal-
lenges both in processing the raw data and its biological interpretation. My goal
is to develop methodologies to address this challenge and apply them to several

central problems in molecular biology. I have the following specific objectives:
Computational platform

Develop a computational framework for processing high-throughput sequencing
in both the mapping- and assembly-first approaches.

Library construction methods

Understand the differences in the various RNA-Seq library construction methods,
and find the ideal protocol for each task (e.g., characterization vs. expression

measurements).

Transcriptome characterization

Develop methodology for processing sequencing results from RNA-Seq assays
to define the repertoire of transcripts, including their exact boundaries, strand
specificity, splicing isoforms, and abundance. My emphasis will be on ab initio

methodology that assumes we do not know the genes structure in advance.
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Defining the transcriptome, the repertoire of transcribed regions
encoded in the genome, is a challenging experimental task. Current
approaches, relying on sequencing of ESTs or ¢DNA libraries, are
expensive and labor-intensive. Here, we present a general approach
for ab initio discovery of the complete transcriptome of the budding
yeast, based only on the unannotated genome sequence and millions
of short reads from a single massively parallel sequencing run. Using
novel algorithms, we automatically construct a highly accurate tran-
script catalog. Our approach automatically and fully defines 86% of
the genes expressed under the given conditions, and discovers 160
previously undescribed transcription units of 250 bp or longer. It
correctly demarcates the 5’ and 3’ UTR boundaries of 86 and 77% of
expressed genes, respectively. The method further identifies 83% of
known splice junctions in expressed genes, and discovers 25 previ-
ously uncharacterized introns, including 2 cases of condition-depen-
dent intron retention. Our framework is applicable to poorly under-
stood organisms, and can lead to greater understanding of the
transcribed elements in an explored genome.

computational biology | RNAseq | next generation sequencing |
transcriptome profiling | Saccharomyces cerevisiae

E xperimentally defining the complete transcriptome of eukary-
otic organisms has traditionally been a challenging task, involv-
ing large, costly, and slow experimental efforts for sequencing of
ESTs and full-length cDNA libraries. Unlike the genome, RNA
transcripts are not present at equimolar concentrations, and are
typically expressed in a context-specific manner. Thus, despite the
fact that the genomes of >1,000 species have been sequenced, only
few transcriptomes have been extensively characterized.

Recent advances in massively parallel sequencing technology (1,
2) offer new and powerful approaches to the study of transcrip-
tomes. Recent studies (3—7) have shown that, by sequencing the
mRNA content of cells, one can quantify the expression levels of
known genes (by counting how often sequences from a given gene
are observed) and refine their boundaries. For example, Nagalak-
shmiet al. (3) studied the Saccharomyces cerevisiae transcriptome by
mapping reads to the location of known genes to quantify expres-
sion, and to known splice sites to measure their occurrence.
Similarly, Mortazavi et al. (5) studied the mouse transcriptome by
mapping reads to known exons and known splice junctions, as well
as to “putative” junctions between known exons. Thus, in both cases
(and in additional studies, see refs. 4-7) the analysis critically
depended on existing annotation.

A more challenging problem is to define a transcriptome ab
initio, based only on the unannotated genome sequence and
millions of short reads from cDNA samples. Rapid and efficient
methods to do so would transform our ability to define transcripts
and study transcription in any genome. This ability would be
particularly important in a new genome project involving phyloge-
netically isolated species and in cancer genome projects, where the
genome annotation may fail to reflect pathological aberrations. The
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full goal would include: (i) identification of all regions encoding
transcripts (coding and noncoding RNAs) in a given condition or
cell type; (if) demarcation of the 5’- and 3'- ends of transcripts; (i)
determination of splice junctions and identification of different
splice variants; and (iv) identification of posttranscriptional tran-
script editing.

Here, we present a general approach to accomplish all of these
goals, based solely on an unannotated genome sequence and data
from a single sequencing run on an Illumina sequencer (2). To test
our approach, we apply it to the budding yeast S. cerevisiae, and
compare our ab initio results to the known transcript annotation
(8). Our approach automatically and fully defines 86% of the genes
expressed under the given conditions, and discovers 160 previously
undescribed transcription units of 250 bp or longer. The approach
correctly demarcates the correct 5’ and 3’ UTR boundaries of 86
and 77% of expressed genes, respectively. The method identifies
83% of known splice junctions in expressed genes, and discovers 25
previously uncharacterized introns, including evidence for 2 rare
cases of condition-dependent “alternative splicing.” Last, we use
the data to quantify absolute and relative expression levels of each
transcript, showing remarkable agreement with well-established
microarray technologies.

Our results demonstrate that massive, cost-efficient, and fast
sequencing can be used to accurately define and quantify a transcrip-
tome ab initio. To evaluate the strength of our approach, we have
refrained from using other sets of data and gene predictions methods.
However, in many practical cases, these methods can be incorporated
into a single bioinformatics pipeline for a more powerful outcome.
This framework can be readily applied to study poorly understood
organisms, for which only the genomic sequence is known.

Results

Sequencing the Budding Yeast Transcriptome. To define the budding
yeast transcriptome ab initio, we generated cDNA libraries from
poly(A)* mRNA from the budding yeast S. cerevisiae under 2
growth conditions: in rich medium (YPD) and after heat shock
(HS). We used a cDNA preparation procedure that combines a
random priming step with a shearing step (see Materials and
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Fig. 1. Unbiased sequencing of the yeast transcriptome. (4) Distribution of
reads mapped to the PAP1 locus. Shown are SGD annotations (downloaded at
November 2007) (8), and mapped reads (red, W strand; blue, C strand).
Additional tracks plot the cumulative number of reads covering each base
position (yellow, YPD; light blue, HS). Full data can be accessed at http:/
compbio.cs.huji.ac.il/RNASeq, and is visualized using the University of Califor-
nia, Santa Cruz, genome browser (22). (B) Distribution of reads matched to the
genome. Of the 26,050,414 reads sequenced in YPD (Left), 13,424,957 (52%,
blue) were uniquely mapped to a single genomic locus, 6,144,595 (23%,
green) were mapped to several locations, and 6,480,862 (25%, yellow) could
not have been aligned, and were later used to detect splice junctions. Similar
numbers were found after a HS (Right).

Methods). This approach has 2 benefits, which are essential for
ab initio predictions. First, unlike other methods that provide a
signal only in the 5" or the 3’ end of transcripts, our method results
in signal that covers the whole transcript (Fig. 14). Second, for
sequencing with short reads, random priming alone results in
extensive nonuniformity in the start sites (9), whereas we obtain
better uniformity.

We sequenced each library using an Illumina 1G Analyzer to
generate 36-bp long reads. We obtained 25,043,976 reads from the
YPD sample (2 biological replicates) and 11,776,251 reads after HS
(see Materials and Methods). The entire experiment (RNA extrac-
tion, library preparation, and sequencing) required <14 workdays.

Then, we developed an accurate method to map reads to their
genomic locations. The sequence matching approach used in pre-
vious studies (3, 4) may fail due to errors in the sequencing process
or repetitive genomic regions (as a result of low-complexity or
homology). Therefore, we developed a detailed probabilistic error
model that scores the genomic matches of reads according to the
position-specific probability of sequencing errors [see Materials and
Methods; also, supporting information (SI) Fig. S1 and Dataset S1].
To minimize mapping errors, a read should match a specific
genomic sequence at a strict threshold and should not match any
other genomic location, even at a more relaxed threshold (see
Materials and Methods). Applying this strategy to our data, we
uniquely mapped 52% of the reads in YPD. We discarded an
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additional 23% of the reads that mapped to >1 genomic locus; this
proportion is consistent with expectations due to genomic repeats
(25.5% for 36-bp reads based on simulation). The remaining 25%
reads did not map to any genomic locus at the required stringency
(Fig. 1B). A minority is due to posttranscriptional modifications,
such as splicing (see below). We obtained similar results with the
reads in the HS experiment (Fig. 1B).

Ab Initio Construction of a Transcript Catalog for S. cerevisiae. We next
developed a procedure to ab initio define all of the transcriptional
units expressed under the 2 conditions, using only the mapped
cDNA reads and the (unannotated) genome sequence of S. cerevi-
siae (Fig. 24). Based on the current annotation of the yeast genome
and microarray-based expression studies (8, 10), we expect 4,630
known genes to be expressed in YPD (at >0.2 transcripts per cell;
see Materials and Methods). We started by identifying contiguous
regions with a density of cDNA reads above a given threshold.
Because genes are densely packed in the S. cerevisiae genome, such
regions can span several genes. Thus, we developed a procedure
that breaks these regions into segments of consistent read density,
reflecting the expectation that transcript levels should be much
more consistent within genes, than between genes (see Materials
and Methods and Fig. 2B; also, Fig. S2). Last, we predicted
transcription orientation based on different read densities between
ends of genes (even in our relatively uniform libraries, there is a
higher read density toward the 3’ end, which may be due to the
library preparation protocol; see Materials and Methods and Fig.
2B). In total, we identified 6,248 segments, demarcating putative
transcribed regions.

Before assembling a gene catalog, we next searched for splicing
events. We analyzed the 25% of reads (9,212,859) that did not
match the genome to identify those that may originate from splicing
events. In such events, sequences from 2 exons that are separated
in the genomic sequence are adjacent in the mature mRNA,
yielding reads with a “gapped alignment” (Fig. 2C).

We developed an automatic method to systematically discover
splice junctions. First, we identified reads with a gapped alignment,
involving 2 sites of at least 10 bp each separated by at most 2 Kb (and
together adding up to 36 bp). We required the same noise thresh-
olds as before to filter out mismatches and nonunique matches (see
Materials and Methods). Because we allow only a single gap, the
probability of finding a spurious match is extremely low, although
the precise gap location might be ambiguous by 1 or 2 base pairs,
depending on the exact sequence at the gap boundaries. To
eliminate spurious events, we required splice junctions to be
supported by multiple observations. Specifically, we included all
putative junctions that were either (i) supported by at least 5
independent reads (possibly starting at different locations; 243
junctions); (if) supported by at least 3 independent reads and
contain donor (5") and acceptor (3') splice site motifs (263 junc-
tions; see http://compbio.cs.huji.ac.il/RNASeq); or (iii) supported
by 2 independent reads and contain very strong splice motifs (13
junctions). This scoring allows us to resolve ambiguities, increase
confidence in gapped reads, and assign an orientation to the
junction (see Materials and Methods and Fig. 2C). The remaining
putative junctions had little support and were discarded. In partic-
ular, shorter junctions are likely due to short deletions in the
genomic DNA of the particular strain, consistent with Illumina
sequencing of the DNA of this specific strain (data not shown). The
resulting set had 285 junctions of 40 bp or longer. Notably, the
majority of these junctions (243/285) were identified by the first
criterion (5 strong junctions lack canonical splice site signals
altogether; see http://compbio.cs.huji.ac.il/RNASeq), demonstrat-
ing the power of ab initio detection.

Joining the putative transcribed units based on the splice junc-
tions, we built a final catalog of the yeast transcriptome in the 2
measured conditions (Fig. 24; Dataset S2). This catalog includes
6,160 transcripts, 264 of them with at least 1 splicing junction.
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Fig. 2. Ab initio assembly of a transcript catalog. (A) Outline of steps in the
catalog construction pipeline. (B) Segmentation of a contiguously transcribed
region into 2 regions of distinct expression levels corresponding to the genes
YBR287W and APM3. When using YPD reads alone, both genes exhibit similar
coverage and thus cannot be segmented. However, in HS, they are differentially
expressed, and hence by combining observations from both conditions the au-
tomatic segmentation procedure (see Materials and Methods) correctly sepa-
rates them to 2 units. Tracks from top to bottom: SGD annotations (blue), our
catalog (green), read coverage at YPD (yellow), and read coverage at HS (blue).
(C) Detection of splice junctions. Full and gapped reads mapped to the RIM1
genomic locus. Tracks are as in B, together with gapped reads (connected seg-
ments), our putative splice junctions (in red and blue), including the junction
orientations as estimated by donor and acceptor sequence motifs (arrows). As
shown, our procedure identifies the exact coordinates and orientation of the
known splice site.
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Assessment of Transcription Units of the Catalog. We compared our
ab initio catalog of transcripts with the current annotated tran-
scriptional catalog of the yeast genome. Approaches based on
sequencing of mRNAs cannot discover genes that are not ex-
pressed. Also, because we rely on short reads, we are limited to
identifying transcripts in alignable (nonrepetitive) genomic regions.
By using conservative thresholds, there are 5,437 (94%) known
genes (classified as “verified” or “uncharacterized” ORF genes; see
ref. 8) in the yeast genome that are “alignable” (at 50% coverage
or more) with 36-bp reads, of which 4,784 are expressed in YPD
(see Materials and Methods).

Overall, the ab initio transcriptional units in our catalog cover
99% of these expressed genes over >80% of the length of genes
(Fig. 34). For 86% of the genes, the transcriptional units fully cover
the known genes (4096/4784; see Fig. 34). For the remaining 13%
of genes, the genes are largely covered, but correspond to multiple
transcriptional units that have not been confidently connected (due
to gaps or unevenness in coverage, particularly for highly expressed
genes); this problem should be largely eliminated by connecting
transcribing units through the use of “paired-end” reads, which are
now becoming routinely available on the Illumina platform (11).
Last, we correctly assigned orientation to 3,432 genes (84%), based
solely on the pattern of increasing read density from 5’ to 3’-end.
Opverall, these results demonstrate that we can reconstruct the
compendium of transcripts with great sensitivity and specificity.

Notably, our analysis indicates transcription from some “dubious
ORFs” loci (62 of 206 expressed alignable dubious ORFs that do
not overlap any other gene). In comparison, only 1% of nontran-
scribed loci based on ultradense tiling arrays (12) are covered by
transcription units in YPD. This observation suggests that these are
less likely to be spurious transcription events, and that some of these
loci encode for functional transcripts (possibly noncoding RNAs).

The transcripts in our catalog assign the correct gene structure in
terms of boundaries (and splicing; see below). Notably, because
RNA-sequencing only samples short reads from transcripts, it has
limited ability to accurately determine transcript boundaries in a
highly compact genome (as compared with 5’ sequencing methods).
Nevertheless, our transcript boundaries reasonably match several
previous annotations of transcript boundaries in S. cerevisiae. These
include the known annotations (SGD) as well as start site defini-
tions based on previous full-length cDNA sequencing (13) and
ultradense tiling arrays (12). In particular, our 5" UTR positions
match 80% of previous definitions within 50 bp, but have limited
agreement in higher resolution [47% with Miura et al. (13); 22%
with David et al. (12) in 10-bp resolution]. This latter result may be
because our protocol likely misses 8-21 nt at the 5" end of the
transcript (14). Notably, we correctly predict the 3’ boundaries of
307 of 501 (60%) pairs of converging genes, and miss the boundary
by at most 50 bp for an additional 58 cases (11%). Differential
expression is a major contributor to correct detection. For correctly
predicted pairs, the mean differential expression ratio is 8.5, whereas for
those pairs that we cannot correctly differentiate, the mean differential
expression ratio is 2.9. By considering the predicted ORFs within our
transcripts, we estimate the typical lengths of 5" and 3’ UTRs as 153 bp
(SD of 145 bp), and 169 bp (SD of 142 bp), respectively (see http://
compbio.cs.huji.ac.il/RNASeq; also, Dataset S3).

To our surprise, although 93% of our catalog corresponds to
known genes (Fig. 3B; Dataset S2), we also discovered 160 tran-
scription units of length =250 bp that did not overlap any previously
annotated transcripts (Dataset S2; see ref. 8). Many of these units
are clearly transcribed, for example, a ~3,694-bp region at Chro-
mosome 1, coordinates 196277-199970, that we also validated
experimentally (see below). Many of these transcripts have sup-
porting evidence in the raw data from hybridization to tiling arrays
(129 units overlap; see ref. 12) and cDNA sequencing (92 units
overlap; see ref. 13); although these previous studies did not report
them as transcriptional units per se. Some of the units are differ-
entially expressed between YPD and HS (Dataset S2). Most
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notably, 12/160 novel units have are induced 10-fold or higher in HS
vs. YPD, and 2 of those are not detected at all in YPD.

Opverall, the previously undescribed units are mostly short (mean
length of 713 bp, SD of 431 bp), and many are likely not coding for
a protein. Several lines of evidence support this conclusion. First,
the predicted ORFs are usually short (mean predicted ORF of 51
aa, SD of 19 aa, 20 units >80 aa; see Dataset S2), and do not match
predicted or known proteins in other fungal species. Second, when
sampling regions of the same length at random from intergenic
regions, the median length of predicted ORFs is 146 aa, in contrast
to the much shorter median length of predicted ORFs in these
transcription units (48 aa). Last, relatively few of the units are evolu-
tionary conserved (28/160 units >50% conservation; see ref. 15), which
is not significant when compared with random (P = 0.059).

We experimentally tested and verified 4 of these novel transcripts
by RT-PCR followed by sequencing. These included: (i) the novel
~3,694-bp transcript discussed above (Chromosome 1, 196277-
199970, see Fig. S3A4); (ii) a transcribed pseudogene at Chromo-
some 15, coordinates 36742-38650 (Fig. S3B); (iii) a novel tran-
scription unit at the YMR194C locus that spans both a dubious
ORF (YMR19%4C-B) and the gene YMR194C-A (Fig. S3C); and (iv)
a predicted 900-bp 3" UTR for the FEN2 gene. In the latter 2 cases, the
novel transcriptional units overlap, expand, or modify dubious ORFs or
pseudogenes. For example, the novel transcription unit at the
YMR194C locus also includes a 200-bp 3' UTR past the predicted stop
codon of YMR194C-A, suggesting a recent pseudogene.

Validation of Splice Junctions. Our splice site predictions are also
highly accurate and sensitive, as compared with the known anno-
tated junctions. The 285 ab initio detected splice junctions include
most of the annotated junctions in the yeast genome (Fig. 3C;
Dataset S2). We predict 254 (83%) out of 305 known junctions
within 5-bp resolution. Of the 51 missed junctions, 21 are in non
unique “unalignable” regions (telomeres and ribosomal protein
genes), and 21 have very low read coverage (Fig. 3D). From the
remaining 9 cases, we see read-through transcription in 4 undetected
junctions, whose introns are matched by a significant number of reads
(see http://compbio.cs.huji.ac.il/RNASeq), and determine a corrected
location for 1 junction (LSB3 gene; see below). Thus, in only 4 of the
51 cases, we do not detect spliced reads for unknown reasons.

We also discovered 25 previously uncharacterized splice junc-
tions that are not close to any annotated ones (one is an “artifact”
caused by the HIS3 deletion in this strain). To study the implications
of these splice junctions, we examined their effect on transcript
structure. We found that 11 of the putative junctions are within
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annotated coding regions and affect the encoded protein, either by
modifying existing introns, or by introducing additional ones (Data-
set S3). For example, in the LSB3 gene, our putative intron is 24-bp
shorter than the known one, adding 8 aa to the translated protein.
When compared with other yeast species, the 8-aa stretch shows
clear evolutionary conservation in the orthologous proteins (Fig.
S4; see ref. 16); thus, it appears to be a conserved part of the protein.

In 6 of these junctions, we see evidence for alternative splicing
(intron retention), because 3 junctions appear only in YPD and 3
only in HS (while taking into consideration the number of full reads
aligned in both conditions; see http://compbio.cs.huji.ac.il/
RNASeq). For example, in the MRM2 gene, the discovered intron
is spliced out only in YPD; thus, creating a shorter protein, which
perfectly aligns with orthologs of this gene in Kluyveromyces lactis,
Candida lusitaniae, Debopriya hansenii, Candida guilleromondi, Candida
tropicalis, and Candida albicans. In C. albicans, for example, the intronic
sequence is completely missing from the genome, strongly supporting
the functionality of this spliced form. Similarly, in the APE2 gene, the
HS intron is slightly shorter, which creates a protein that is 6-aa shorter
than the regular one. This modified protein has a domain that fits
orthologs of this gene in Saccharomyces paradoxus, Saccharomyces
mikatae, and Saccharomyces bayanus.

We experimentally tested 6 predicted splicing events and vali-
dated 4 of them (in the genes FES1, YMR148W, RPS22B, and
AGA?2) using RT-PCR and sequencing (Fig. 3E; Fig. S5). For
example, in the FESI gene, our catalog identified a previously
uncharacterized intron with full reads through the splice junction
and inside the intron, suggesting alternative splicing (Fig. 3E). In the
spliced variant, the annotated stop codon is abolished and a later
stop codon is introduced, resulting in a 10-aa extension. Validation
by RT-PCR shows bands consistent with both the spliced and
unspliced variants (sequencing of these bands confirmed the splice
site). Another example of alternative splicing is the SUS1 gene,
where, in addition to the 2 known introns, we also observe clear
read-through at both junctions (Fig. S54). Experimental validation
confirms our predictions by revealing 3 bands, 2 bands consistent
with just 1 intron spliced, and a stronger band consistent with both
introns spliced out. A third example is an intron from the end of the
snoRNA, SNR44, to the acceptor site of its hosting intron, inside
RPS22B (Fig. S5B). All experimental validations were performed
by RT-PCR followed by sequencing of the bands to verify the exact
splice site. The predicted splice junctions that we could not validate
may be in low-abundance or represent partial splicing.
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Inferring Expression from Massively Parallel Sequencing. Having
defined a gene catalog, we then examined the ability to infer
quantitative expression levels from sequence abundance. We esti-
mated the mRNA abundance of known annotated ORFs by
calculating the average density of reads along each ORF and
compared the results with expression data from microarrays. We
converted the read densities per gene to rough assessments of
absolute mRNA copy numbers per cell, using a conservative
estimation of 15,000 transcripts per yeast cell (17). This analysis
reveals at least 4 orders of magnitude differences in mRNA copy
number among genes. For example, we find an average of 26
mRNA copies per cell for the top 5% of expressed genes, in contrast
to an average of 0.0026 copies per cell for the bottom 5% (Fig. S6.4).
The top 5% of expressed genes in YPD account for 58% of the
transcriptome, mostly comprised of transcripts encoding protein
biosynthesis proteins and central carbon metabolism enzymes. Our
mRNA copy number estimates are consistent with previous esti-
mates using DNA microarrays (Pearson correlations of 0.67, P <
107399, 0.72, P < 1073%; and 0.83, P < 1073%, respectively; see
Dataset S3 and Fig. S7) (3, 10, 18).

To calculate the relative expression level of each gene in HS vs.
YPD, we compared the read densities in the 2 conditions. We
compared the result with relative expression levels for the same
mRNA samples inferred by commercial 2-dye microarrays (see
Materials and Methods). Indeed, these ratios show strong agreement
(Pearson correlation coefficient of 0.87, P < 1073%; see Fig. S6B).
These results were reproducible across sequencing and microarray
replicates (Dataset S3; http://compbio.cs.huji.ac.il/RNASeq), con-
sistent with recent studies (5).

Discussion

We set out to test whether it is possible to define a complete yeast
transcriptome ab initio using only the (unannotated) genome
sequence and massively parallel sequencing of cDNA from 1 or
more experimental conditions. Our approach independently iden-
tifies the vast majority of known genes transcribed under the tested
conditions, correctly infers splicing events, and detects the correct
gene structure. Also, it corrects a number of current annotations and
identifies previously undescribed transcriptional units and splice junc-
tions, several of which we validated experimentally. Last, the method
can also accurately quantify the expression levels of transcripts.

There are several crucial steps in the strategy. First, the creation
of the cDNA fragments determines the transcript coverage. The
laboratory protocol that we used here is only mildly biased toward
the 3’ end of the transcript and thus provides efficient coverage
throughout the transcript, allowing us to effectively assemble
transcripts from short reads. Second, to accurately map reads to the
reference genome, we created a sequencing noise model to limit the
errors in mapping. Because the yeast genome has large unique
regions, we can estimate the error model from the data without
requiring calibration runs. Using this model, we correct for varying
quality among batches. Unlike previous read mapping approaches
(19), our method estimates the noise model separately for each
batch; thus, it is more specific and, depending on the model, may
allow for more mismatches if their probability is higher. Third, using the
error model and sequence similarity tests, we reliably identify reads that
are split between 2 genomic positions. This step is crucial for identifying
splice junctions ab initio and defining correct gene structures, and is
distinct from previous read mapping approaches (19).

Our approach has several limitations. First, we are unable to
predict transcriptional units for low-copy transcripts and nonunique
regions (e.g., at the telomeres). Although we can estimate relative
expression of some low-copy transcripts, we cannot reliably deter-
mine splicing events or boundaries in such genes. We partially
address this issue by creating libraries from YPD and HS. Deeper
sequencing and libraries from additional conditions can further
improve the completeness of the catalog. Second, we miss splicing
events due to local nonuniqueness at the splice junction. We can
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alleviate this problem by sequencing either longer reads or paired-
end fragments, both of which are becoming available (11). Last, our
approach is limited in detecting and distinguishing antisense tran-
scripts and differentiating between close divergent transcription
units due to the lack of strand specificity. Although in most cases
we can recover transcript orientation, we can further improve the
predictions by constructing strand-specific cDNA libraries.

Unlike recent studies (3, 5), we demonstrate the use of massively
parallel sequencing for complete, ab initio construction of a eu-
karyotic transcriptome, independent of any existing genome anno-
tation. For example, Mortazavi et al. (5), and several similar
approaches (3-7), use a step-wise mapping approach that relies on
mapping reads to known gene models, exons and splice junctions.
De novo discovery in these schemes is also limited, and is based on
mapping reads to all possible combinations of known exons. Such
approaches cannot detect splice junctions between unannotated
exons. Also, they are not applicable to a genome for which there are
poor (or no) gene predictions. In contrast, our approach searches
for all the locations where a spliced version of an unaligned read can
be mapped in the genome. Thus, our approach will be useful for both
smaller more compact genomes, such as those of fungi or protists that
often involve phylogenetically isolated groups for which there are poor
gene predictions (20), as well as for aberrant cancer genomes.

Our work powerfully demonstrates the feasibility of constructing
a transcriptome of an organism in a comprehensive, fast, and cheap
way. To estimate the power of this approach, we conducted our
analysis in isolation from any other source of data or gene predic-
tion methods. Nevertheless, we anticipate that in many practical
setups it can be powerfully combined with other gene prediction
approaches. Applying our approach to explore the transcriptomes
of less characterized organisms in an ab initio fashion, can have a
significant impact on genomics studies.

Materials and Methods

Yeast Strains and Growth Conditions. HS experiment. The strain used was a
derivative of the S. cerevisiae strain S288c (BY4741; see ref. 21). We grew 1-L
cultures overnight in YPD medium (1% yeast extract, 2% peptone, 2% dextrose)
to an ODgpo of ~1.0. The cultures were split and 1 flask was submerged in a 37 °C
water bath and the other in a 22 °C water bath; 50-mL samples were harvested
after 0 and 15 min.

RNA extraction and library preparation. Total RNA and polyA* RNA were isolated
by using the RNeasy Midi Kit (Qiagen) and Poly(A) Purist kit (Ambion), respec-
tively. Samples were quality controlled with the RNA 6000 Nano Il kit of the
Bioanalyzer 2100 (Agilent). Sheared cDNA libraries were created for 6 samples
(22 °C, 0 min; 22 °C, 15 min; 37 °C, 15 min; 2 replicates per condition; 150 ng of
polyA™ RNA per sample). The cDNA was synthesized by using the SuperScript
Double-Stranded cDNA Synthesis kit (Invitrogen) with SuperScript Il (Invitrogen),
15-ng random hexamers (Invitrogen), and 20 units SUPERase-In (Ambion). Primer
annealing was done at room temperature for 10 min followed by 1 h at 55 °C for
first strand synthesis and 2 h at 16 °C for second strand synthesis; cDNA was
sheared by sonication with 12 alternating cycles between "high intensity” (30's;
duty cycle, 20%; intensity, 10%; cycles per burst, 200) and “low intensity” (4s; duty
cycle, 5%; intensity, 10%; cycles per burst, 200) in the Frequency Sweeping mode
(Covaris S2 machine). Adapters for lllumina sequencing were added following the
instructions provided, except that 5 times less adapter mix was ligated to the
cDNAs and PCR primers were removed by digestion with RecJ (New England
Biolabs). Each library had an insert size of 60 to 110 bp. One lane of sequence (5.4
to 7.0 M reads) was generated for each sample on an lllumina 1G sequencer.

Genomic Mapping of Reads. Error model. We developed a detailed probabilistic
model for scoring the quality of matching reads to the genome. Our score
depends on the specific type of sequencing error made (e.g., genomic A se-
quenced as C) and its position within the sequenced read. Formally, the score of
obtaining a read R originating from a genomic sequence G equals
33%.1092(Pr(R||G;,1)), Where i is the position within the read, R; is the sequenced
nucleotide at position i, and G; is the nucleotide at the corresponding genomic
position. To estimate the error parameters, we identified reads with up to 4
mismatches to highly unique regions of the genome. Then, we estimated the
fraction of errors at each position for each genomic nucleotide (Fig. S1).

Mapping method. To map the sequenced reads to the genome with minimal
errors, we devised the following strategy. Each read was compared with every
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possible 36-bp window in the genome and scored according to the error
model above. We developed a procedure that uses suffix trees to efficiently
finds all of the matches above a predefined threshold. To filter the matches,
we require that the read matches the assigned genomic sequence with a
threshold (—8.3) that assures correct mapping of 95% of reads (based on
simulations). Also, to ensure uniqueness, we require the match to remain
unique even when allowing a more relaxed threshold (—11.5).

Detection of Transcriptional Units. Segmentation of transcriptional units. To
identify transcriptional units, we first artificially extended mapped reads to
partially reconstruct the dsDNA segments they originated from. Because the
segmentsize in our library varies between 60 and 110 bp, we chose a conservative
approach and extended each read by an additional 40 bp (each read isnow 76 bp).
We then identified contiguously covered genomic regions. In many cases, these
regions contained >1 gene, due to overlapping neighboring transcripts in the
dense yeast genome. To refine these regions into single transcribed units, we
developed an automated segmentation algorithm to fit the genomic patterns of
mapped reads using piecewise linear regression (Fig. S2). Neighboring genes
often exhibit different expression levels allowing an accurate partition. To
achieve a coherent segmentation, we applied our algorithm to YPD and HS data
simultaneously. This strategy also allows us to use the transcriptional differences
of genes between the 2 conditions. For example, the 2 neighboring genes
YBR287W and APM3 (Fig. 2B; Fig. S2) have similar expression levels at YPD; hence,
preventing a proper segmentation to 2 transcription units. However, at HS,
YBR287W is expressed in much higher levels than APM3, allowing us to position
the boundary between the 2 genes.

Definition of nontranscribed loci. For a negative control, we applied a sliding
window of 75 bp over the data of David et al. (12), and identified 892 loci that
presented the lowest mRNA to genome signal in YPD.

Automated determination of orientation. As demonstrated in Fig. 2B, the typical
density of reads is not completely uniform along the transcript with higher
density toward the 3’ end. We use this pattern to estimate the orientation of each
transcription unit. We use the slope of our piecewise linear fit to determine the
orientation of each transcription unit. Specifically, we estimate a 95% confidence
interval of the regressed slope parameters, and assign a forward or reverse
orientation to the transcription unit if the entire interval is orientation-consistent
(above or below zero, respectively).

Detection of splice junctions. First, we map gapped reads by searching for
coordinated partial matches to 2 genomic loci within 2 Kb, each one of at least
10 bp (and together adding up to 36 bp). We require the same noise thresholds
to filter out mismatches and nonunique matches. Specifically, we score each
putative match with the score described above, allowing a single gap in the
genomic sequence. Second, we calculate the position-specific scoring matrix
(PSSM) score for each gapped read, according to the splice motifs we learned
from the known introns (see http://compbio.cs.huji.ac.il/RNASeq). Third, we
cluster gapped reads by the genomic location of their gaps. Each cluster
defines a putative junction in the transcriptome, and is characterized by the
number of supporting reads and the PSSM score of the junction. We assign
orientation to each putative junction using these asymmetric PSSM motifs. We
define a threshold over the PSSM log-odd scores (2.78), such that 95% of the
known splice junctions (based on SGD annotations, October 2007) are iden-
tified in the correct orientation.

Definition of Alignable Expressed Genes. A genomic location is “nonalignable”
if reads originating from that location will be mapped by our method to at least
one other location in the genome; otherwise, we say that the location is align-

1. Margulies M, et al. (2005) Genome sequencing in microfabricated high-density picolitre
reactors. Nature 437:376-380.
. Bentley DR (2006) Whole-genome re-sequencing. Curr Opin Genet Dev 16:545-552.
. Nagalakshmi U, et al. (2008) The transcriptional landscape of the yeast genome defined by
RNA sequencing. Science 320:1344-1349.
4. Wilhelm BT, et al. (2008) Dynamic repertoire of a eukaryotic transcriptome surveyed at
single-nucleotide resolution. Nature 453:1239-1243.
5. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying
mammalian transcriptomes by RNA-Seq. Nat Method’s 5:621-628.
6. Cloonan N, et al. (2008) Stem cell transcriptome profiling via massive-scale mRNA sequenc-
ing. Nat Methods 5:613-619.
7. Salehi-Ashtiani K, et al. (2008) Isoform discovery by targeted cloning, ‘deep-well’ pooling
and parallel sequencing. Nat Methods 5:597-600.
8. Cherry JM, et al. (1998) SGD: Saccharomyces Genome Database. Nucleic Acids Res 26:73-79.
9. Wang ET, et al. (2008) Alternative isoform regulation in human tissue transcriptomes.
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95:717-728.
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Methods 5:183-188.
12. DavidL, etal. (2006) A high-resolution map of transcription in the yeast genome. Proc Nat/
Acad Sci USA 103:5320-5325.
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able. We define a gene to be alignable if at least 50% of locations within its
coding region are alignable. We define genes, known from previous studies to
have at least 0.2 mRNA copies per cell (on average) (10), as “expressed,” reflecting
85% of the transcriptome at YPD condition.

Estimation of Gene Expression Levels. Using annotations from SGD (October
2007), we calculate the number of reads mapped to each coding region. We
approximate the expression level of each gene by the average density of reads
along the unique (alignable) part of the coding region. This measure is expressed
in arbitrary units of number of reads per lane per 1-K base pairs, and is assumed
to be proportional to the actual number of mRNA molecules per cell. Assuming
a conservative estimation of 15,000 transcripts per cell (17), we can assess the
expected number of copies for each gene. Relative expression levels (HS vs. YPD)
are calculated by comparing the average density of each gene at the 2 conditions.

Relative Gene Expression Using Commercial Arrays. PolyA* RNA samples from
one replicate each of the 37 °C, 15 min (HS) and 22 °C, 15 min (YPD reference)
were labeled with either Cy3 or Cy5 by using a modification of the protocol
developed by De Risi (University of California, San Francisco) and Rosetta Inphar-
matics that can be obtained at http:/www.microarrays.org. For the detailed modi-
fied protocol see http://compbio.cs.huji.ac.il/RNASeq. Four technical replicates of the
HS samples were hybridized against the reference on commercial S. cerevisiae (5288C
strain) 2-color 60-mer oligo Agilent arrays in the 4 X 44 K format (Agilent). After
hybridization and washing per Agilent instructions, arrays were scanned by using a
scanner (Agilent) and analyzed with a feature extraction software (Agilent).

Validation of Novel Transcription Units and Splice Sites. RNA from the HS and
YPD reference samples was treated with TURBO DNA-free Kit (Ambion) to
remove trace amounts of genomic DNA; cDNA was synthesized from this RNA by
using a SuperScript Double-Stranded cDNA Synthesis Kit (Invitrogen). Assays
were designed to detect predicted RNA species by the PCR. Reactions were
performed under the conditions specified in the Amplitag gold polymerase
product manual (Applied Biosystems) by using 10 ng of cDNA as template in a
volume of 50 pL. For primer sequences, see http://compbio.cs.huji.ac.il/RNASeq.
Products were amplified by using the following Thermocycler program: i, 95 °C
for 5 min; ii, 95 °C for 30's; jii, 56 °C for 30's; iv, 70 °C for 45 s; go to step 2 for 40
cycles; v, 70 °C for 7 min; vi, 4 °C forever. PCR products were separated by using 3%
Metaphor agarose (Cambrex) gels. The DNA fragments were isolated from the gel by
using a QIAEX |l Gel extraction kit (Qiagen). These fragments were cloned by using a
TOPO TA Cloning Kit for Sequencing (with pCR4-TOPO) with One Shot TOP10
Chemically Competent Escherichia coli and PureLink Quick Plasmid Miniprep Kit
(Invitrogen). Insert containing constructs were sequenced at the Massachusetts In-
stitute of Technology core facility. Sequences were verified by using the BLAST
function at the Saccharomyces genome database (www.yeastgenome.org/).

Supplementary Web Site. Raw data and additional notes and figures can be
found at our supplementary web site (http://compbio.cs.huji.ac.il/RNASeq).
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Comprehensive comparative analysis of strand-specific

RNA sequencing methods

Joshua Z Levin'%, Moran Yassour!~3, Xian Adiconis', Chad Nusbaum!, Dawn Anne Thompson!,

Nir Friedman%, Andreas Gnirke! & Aviv Regev!>>

Strand-specific, massively parallel cDNA sequencing (RNA-seq)
is a powerful tool for transcript discovery, genome annotation
and expression profiling. There are multiple published methods
for strand-specific RNA-seq, but no consensus exists as to how
to choose between them. Here we developed a comprehensive
computational pipeline to compare library quality metrics from
any RNA-seq method. Using the well-annotated Saccharomyces
cerevisiae transcriptome as a benchmark, we compared seven
library-construction protocols, including both published and
our own methods. We found marked differences in strand
specificity, library complexity, evenness and continuity of
coverage, agreement with known annotations and accuracy

for expression profiling. Weighing each method’s performance
and ease, we identified the dUTP second-strand marking and
the Illumina RNA ligation methods as the leading protocols,
with the former benefitting from the current availability of
paired-end sequencing. Our analysis provides a comprehensive
benchmark, and our computational pipeline is applicable for
assessment of future protocols in other organisms.

Recent advances in massively parallel cDNA sequencing (RNA-
seq) have opened the way for comprehensive analysis of any tran-
scriptome!. In principle, RNA-seq allows analysis of all expressed
transcripts, with three key goals: (i) annotating the structures of
all transcribed genes including their 5" and 3" ends and all splice
junctions?™, (ii) quantifying expression of each transcript™® and
(iii) measuring the extent of alternative splicing’~!1.

Standard libraries for RNA-seq do not preserve information
about which strand was originally transcribed. Synthesis of ran-
domly primed double-stranded cDNA followed by addition of
adaptors for next-generation sequencing leads to the loss of infor-
mation about which strand was present in the original mRNA
template. In some cases, strand information can be inferred by
subsequent computational analyses using, for example, open
reading frame (ORF) information in protein-coding genes, biases
in coverage between 5’ and 3’ ends* or splice-site orientation in
eukaryotic genomes®10:11,

Nevertheless, direct information on the originating strand can
substantially enhance the value of an RNA-seq experiment. For
example, such information would help to accurately identify anti-
sense transcripts, with potential regulatory roles'?, determine the
transcribed strand of other noncoding RNAs, demarcate the exact
boundaries of adjacent genes transcribed on opposite strands and
resolve the correct expression levels of coding or noncoding over-
lapping transcripts. These tasks are particularly challenging in
small microbial genomes, prokaryotic and eukaryotic, in which
genes are densely coded, with overlapping untranslated regions
(UTRs) or ORFs and in which splice-site information is limited
or nonexistent.

Many methods have been recently developed for strand-specific
RNA-seq, and they fall into two main classes. One class relies on
attaching different adaptors in a known orientation relative to
the 5" and 3’ ends of the RNA transcript (Fig. 1a). These proto-
cols generate a cDNA library flanked by two distinct adaptor
sequences, marking the 5" end and the 3" end of the original
mRNA. A second class of methods relies on marking one strand
by chemical modification, either on the RNA itself by bisulfite
treatment or during second-strand cDNA synthesis followed by
degradation of the unmarked strand (Fig. 1b). Both modification
methods essentially follow the standard protocol for RNA-seq
with the exception of these marking steps.

Although standard RNA-seq largely relies on one protocol, the
great diversity of published protocols for strand-specific RNA-
seq poses several challenges. First, when conducting an experi-
ment, researchers are challenged to identify a suitable protocol.
Furthermore, if protocols vary considerably in their performance,
the chosen method can dramatically affect the conclusions drawn
from an experiment, confounding interpretation and comparison
across studies. There is therefore a substantial need for a sys-
tematic evaluation of the performance of different protocols for
strand-specific RNA-seq.

Here we present a comprehensive comparison of seven proto-
cols for strand-specific RNA-seq. Using Saccharomyces cerevisiae
poly(A)* RNA, we built a compendium of libraries using these
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Figure 1 | Methods for strand-specific RNA-seq. (a,b) Salient details
for differential adaptor methods including RNA ligation??, SMART3? and
NNSR priming3! (a) and differential marking methods (b). USER, uracil-
specific excision reagent. mRNA is shown in gray and cDNA in black.
For differential adaptor methods, 5" adaptors are shown in blue, and

3’ adaptors are shown in red.

protocols and sequenced each of them on an [llumina Genome
Analyzer instrument to deep coverage. We developed a computa-
tional pipeline to assess each library’s quality according to library
complexity, strand specificity, evenness and continuity of cover-
age, agreement with known genome annotation and quantitative
accuracy for expression profiling, in addition to considering the
ease of laboratory and computational manipulations. We identi-
fied the dUTP and Illumina RNA ligation methods as the leading
protocols, with the dUTP library providing the added benefit of
the ability to conduct paired-end sequencing.

RESULTS

A comparison of strand-specific RNA-seq

We evaluated 13 stand-specific libraries. We constructed 11 librar-
ies based on seven strand-specific RNA-seq methods (Fig. 1),
including two variations for four of the methods. We also compiled
comparable data for two published libraries: a dUTP library!3
and a library based on another (eighth) method from the differ-
ential adaptor class!# (3’ split adaptor; Supplementary Fig. 1).
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Finally, we prepared a standard, non-strand-specific cDNA
library to use as a control in these comparisons.

We explored two different variations for four of the seven methods
to improve our libraries (Online Methods). These variations
were the addition of actinomycin D to the ‘not not so random’
(NNSR) library protocol, two published variations of the bisulfite
library protocol (‘H’ and ‘S’; Online Methods!>19), different size-
selection methods for the Illumina RNA ligation libraries and
different reverse transcription primers for the dUTP libraries.
We present results only for the ‘S’ bisulfite library because we
found no substantial differences between the two libraries in
our analyses.

We used each method to prepare a cDNA library for Illumina
sequencing from . cerevisiae poly(A)* RNA. We chose S. cerevisiae
because this eukaryotic model organism has an exceptionally
well-annotated genome, facilitating quality evaluations. We
used paired-end Illumina sequencing for each library (Online
Methods), except for the RNA ligation and Illumina RNA ligation
libraries, which we sequenced only from the 3" end of each cDNA
because of the RNA adaptors used in these protocols. These
approaches could be modified in the future to accommodate
paired-end sequencing by changing the RNA adaptor and PCR
primer sequences.

An analysis framework for assessing RNA-seq libraries

To compare the quality of the different libraries, we defined six
assessment criteria (Fig. 2) implemented in a computational pipe-
line (Online Methods). These criteria were library complexity,
defined as the number of unique reads (Fig. 2a); strand specificity,
defined as the number of reads mapping to known transcribed
regions at the expected strand (Fig. 2b); evenness and continuity
of coverage at annotated transcripts (Fig. 2¢,d); performance at
5”and 3" ends, defined as agreement with known end annotation
(Fig. 2d); and performance in expression profiling, defined by
sensitivity, linearity and dynamic range. With the exception of
strand specificity, we compared each criterion to that for the con-
trol library. We focused on only one variation per method unless
there were substantial differences in performance between vari-
ations. We provide the full evaluation results in Supplementary
Tables 1-2 and Supplementary Figures 2-4.

Equal sampling of reads enables direct library comparisons
We mapped each library’s reads to the S. cerevisiae genome using
Arachne!”. For paired-end libraries, we mapped unique pairs with
opposite orientations and an appropriate separation; for single-
end libraries, we identified unique mappings for individual
reads!” (Online Methods).

The libraries had a broad range of yields, measured by the total
number of reads and by the number of reads or paired reads
mapping to a unique location (Supplementary Table 1). In this
initial comparison, the dUTP library had the highest percent-
age of paired-end mapped reads (Supplementary Table 1). The
Ilumina RNA ligation-solid-phase reversible immobilization
(SPRI) library, which we prepared using SPRI-based size selec-
tion, had a smaller percentage of unique reads than the Illumina
RNA ligation library, which we prepared using gel-based size
selection (35% versus 59%; Supplementary Table 1). This was
likely due to the difficulty in physically removing cDNAs shorter
than 76 base pairs with the SPRI method, resulting in the ends
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Figure 2 | Key criteria for evaluation of strand-specific RNA-seq libraries. (a-d) Categories of quality
assessment were complexity (a), strand specificity (b), evenness of coverage (c) and comparison to
known transcript structure (d). Double-stranded genome with gene ORF orientation (blue arrows)
and UTRs (blue lines) are shown along with mapped reads (black and red arrows, reads mapped to

sense and antisense strands, respectively).

PR Strand specificity across libraries

We measured the strand specificity of
each library by comparing the mapped
reads to the expected transcribed strand
based on the known S. cerevisiae annota-
tion (Online Methods). Based on recent
studies!®, we conservatively assumed
that most of the S. cerevisiae genes are

of sequencing reads containing an Illumina adaptor sequence
that could not be aligned to the yeast genome. Indeed, when
we trimmed these reads to 51 bases, the percentage of aligned
reads improved dramatically (data not shown). Below, we report
results only for the Illumina RNA ligation library, which we pre-
pared using gel-based size selection.

Some of this variation in performance may reflect varia-
tion in sequencing yields between sequencing runs and lanes
(Supplementary Table 1), unrelated to the library protocol. As
many of our measures were sensitive to read quantity and length,
we used sampling to obtain the same number of reads from each
library (Online Methods). Unless specifically noted, we conducted
all subsequent comparisons with 2.5 million sampled reads from
each library. The ‘switching mechanism at 5" end of RNA template’
(SMART) library had only 930,686 reads because of repeated poor
yields, but with the exception of complexity, we obtained overall
similar results when using the SMART reads ‘as is’ (without any com-
pensatory calculations for there being fewer than 2.5 million reads)
or when randomly resampling the same reads more than once to
reach 2.5 million (data not shown). To compare libraries with dif-
ferent read lengths (51 or 76 bases in our libraries and 36 bases in
published data), we sampled the first 36 bases of every read.

Complexity of single- and paired-end libraries

We next assessed the complexity of each library, defined as
the number of distinct (unique) read start positions (Fig. 2a).
A high complexity library, with many different start positions,
is preferable as it does not suffer from ‘jackpot’ effects in frag-
ment amplification or a strong bias in selection of fragment ends.
Using single-end mapping (Fig. 3a and Supplementary Table 2),
we observed the best complexity for the control library (42%
unique) followed closely by the 3" split adaptor method (42%
unique), SMART (41% unique) and the published dUTP method
(40% unique).

Single-read complexity calculations may overestimate the
number of redundant cDNAs in a library. For paired-end librar-
ies, we also estimated complexity as unique pairs of start and end
positions (Fig. 3b), because cDNAs that have the same start site

not transcribed from the antisense strand
and used the fraction of reads mapped
to the opposite (antisense) strand of known transcripts as a
measure of strand specificity (Fig. 2b, Supplementary Table 2
and Online Methods).

Four of the protocols, RNA ligation, Illumina RNA ligation,
dUTP and NNSR (with actinomycin D), performed best, whereas
the SMART approach was the least strand-specific method, by
a wide margin (Fig. 4 and Supplementary Fig. 5). Only 0.47-
0.63% of the reads mapped to the antisense strand for the four
best performing methods. Notably, addition of actinomycin D
dramatically improved the strand specificity of the NNSR method
(Supplementary Table 2). Actinomycin D treatment cannot be
used to improve the strand specificity of SMART because it inhib-
its both second-strand synthesis and template switching!® (X.A.
and J.Z.L.; data not shown).

Evenness and continuity of annotated transcript coverage
Using RNA-seq for effective transcriptome annotation, which
includes transcript assembly™*4, separating neighboring genes cor-
rectly and identifying full-length transcripts with correct 5" and
3’ ends requires even, continuous and complete coverage along
each transcript’s length.

m RNA ligation m SMART @NNSR ©OdUTP W 3’ split adaptor
M lllumina RNA ligation @ Hybrid 0O Bisulfite @ Published dUTP m Control
a s b 100
40 90 1

g 35 — 80 1 -
2o
5 20 2 401
5 10 20

5 10 1

0 0

Library Library

Figure 3 | Complexity of single- and paired-end libraries. (a,b) Percentage
of unique reads mapping out of the total number of mapped reads, when
considering only single-mapped reads (a; all libraries) or uniquely mapped
pairs (b; only paired-end libraries).
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Figure 4 | Strand specificity and evenness of transcript coverage. (a) Strand specificity (percentage antisense) and evenness of coverage (average
coefficient of variation (CV)) for all libraries. (b) Relative gene coverage at each percentile of a gene’s length, averaged across all genes in each library.
The 5" end is on the left. (c) Percentage of genes with 5’-end and 3’-end coverage in each library.

To measure evenness of coverage for each library, we calculated
the average of the coefficient of variation of gene coverage for the
top 50% expressed genes (Figs. 2c and 4a, Supplementary Fig. 5
and Supplementary Table 2). We found the most even coverage for
the 3’ split adaptor method!* (average coefficient of variation, 0.54),
closely followed by that for the dUTP approach (average coefficient
of variation of 0.64 in the original dataset!3 and 0.76 in our hands).

We defined two measures of continuity of coverage. First,
we counted the number of segments into which each known
transcript was broken, where we defined a break as a stretch of
at least five bases without read coverage (Figs. 2d and 5a and
Supplementary Table 2). We then averaged this measure across
all genes, weighting by the relative expression of each gene

(we expected low-expressed genes to be less covered and more
segmented). The best performing methods by this measure were
the 3" split adaptor method!# (2.29 segments per gene), the dUTP
libraries (2.41 and 2.48 segments per gene with published data'3
and in our hands, respectively) and the Illumina RNA ligation
libraries (2.61 segments per gene).

Second, we calculated the fraction of bases without cover-
age in each transcript (Figs. 2d and 5b-e and Supplementary
Fig. 2) and examined the distribution of this fraction at differ-
ent expression levels, as defined by pooling data across libraries
(Online Methods). As expected, in all libraries, the fraction of
uncovered bases decreased as expression increased (Fig. 5b—e and
Supplementary Fig. 2). However, both the rate of decrease and the

coverage per transcript at higher expres-

— RNAligation sion levels were variable between better
T diiamna ANA ligation performing libraries (Fig. 5¢,d) and poorly
— Hybnd performing ones (Fig. 5e). To systemati-

Bisulfte cally assess this difference, we compared

— Published dUTP
— 3’ split adaptor
— Control

the Lowess fits of each of the distributions
(Fig. 5b and Supplementary Fig. 2).
We found that the dUTP (both in our
hands (Fig. 5¢) and in published data'3)
and 3’ split adaptor (Fig. 5d) methods
performed best.
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Coverage at 5" and 3’ ends

Coverage at 5" and 3’ ends is crucial for
correctly identifying full-length tran-
scripts. To estimate this, we computed for
each library the average coverage at each
percentile of length from the annotated
5’ end to the annotated 3" end of known
transcripts!'® (Figs. 2d and 4b), as well as
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Figure 5 | Continuity of transcript coverage. (a) Average number of segments (separated by at
least five bases of zero coverage) weighted by the average expression of each gene, in each library.
(b) Lowess fit for each library. (c-e) Plots for the dUTP method (c), the 3" split adaptor method (d)
and the SMART method (e). In c-e, a Lowess fit is shown as a red curve, and each gene is

represented by a blue dot.
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the number of genes with complete cover-
age of their 5 and 3’ ends (Fig. 4c). For
paired-end libraries, we computed 5" and
3’ end coverage based on both read pairs,
thus estimating coverage of each end based
on the relevant read.

We found substantial variation in the
average coverage along a gene’s length, with
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Figure 6 | Digital expression profiling using strand-specific RNA-seq. (a,b) Pearson correlation coefficient (a) and r.m.s. error (b) for each library when
compared to a pooled reference, the control library and Agilent microarrays (right). (c,d) Scatter (left), Q-Q (middle) and MA (right) plots for the best
performing (dUTP; c) and worst performing (NNSR; d) libraries, in comparison to the control library. The scatter plots show the fraction of total reads
for each gene (blue dot) in the control library against a strand-specific library. The Q-Q plot shows the level at each quantile (rank) of expression in the
control library against the strand-specific library. A slope = 1 line is shown for reference (red). The MA plot shows for each gene (dot) the difference in
expression levels between the control and strand-specific libraries (M; y axis) compared to their mean expression level (A; x axis). Red and blue dashed

lines indicate twofold and onefold difference in expression, respectively.

specific biases in 5" and 3’ coverage (Fig. 4b,c, Supplementary
Fig. 3 and Supplementary Table 2). The NNSR library data had
more coverage at the 5" ends of transcripts, whereas the remaining
libraries had modestly increased coverage of the 3" ends (Fig. 4b
and Supplementary Fig. 3). Consistent with its evenness and
continuity, the 3" split adaptor method had the best coverage of
both 5" and 3" ends (75% and 77% of genes covered completely
at each end, respectively), followed by the dUTP method (62%
and 73%) (Fig. 4c and Supplementary Table 2). The addition of
oligo(dT) primers for reverse transcription for the dUTP method,
both in our results and in the published data'3, did not increase
the coverage at the 3" ends (Supplementary Table 2), although
more lenient read mapping may assist with this task in reads that
contain portions of the poly(A) tail.

Performance for digital expression profiling
We compared the performance of each library in digital expres-
sion profiling relative to reference expression measurements
estimated from three ‘standard’ sources: the control (non-
strand-specific) library; a pooled estimate generated from the
sampled reads of nine of the strand-specific libraries (Online
Methods); and expression profiles measured by competitive
hybridization of a mid-log phase RNA sample versus genomic
DNA using Agilent arrays (Online Methods). We calculated the
expression of each gene as its length-normalized read coverage
and normalized all values for the total number of reads.

We used several standard quality measures?® to estimate each
library’s performance. These included the Pearson correlation coeffi-
cient of expression levels across all genes (Fig. 6a and Supplementary

Table 2); the root mean squared (r.m.s.) error of the expression meas-
urements in each library using the reference measurement as the
expected level (Fig. 6b and Supplementary Table 2); and scatter,
quantile-quantile (Q-Q) and MA?! plots—the last of which compare
for each gene the difference in expression between two libraries to the
mean expression of that gene in the two libraries (Online Methods,
Fig. 6¢,d and Supplementary Fig. 4) that help compare differences
in expression levels across the dynamic range.

We found that the dUTP library had the best correlation
and lowest r.m.s. error relative to all three references (Fig. 6b
and Supplementary Table 2). The only exception was that the
[llumina RNA ligation method had a slightly better (0.95 versus
0.94) correlation to the pooled library (Supplementary Table 2).
Furthermore, visual inspection of the scatter, Q-Q and MA plots
showed an excellent linear relation between the dUTP library and
the control library across a broad range of values, with weaker
performance only for genes with very low expression (Fig. 6c).
The Ilumina RNA ligation protocol also performed reason-
ably well based on the correlation and r.m.s. error measures
but with noticeably broader scatter across the expression range
(Supplementary Fig. 4). The worst performing methods were
the SMART, NNSR and 3’ split adaptor libraries (Fig. 6d and
Supplementary Fig. 4), by all measures.

DISCUSSION

The evaluated RNA-seq protocols broadly represent exist-
ing approaches (for a summary of their relative merits, see
Supplementary Table 3), and we excluded some protocols because of
well-known technical limitations, incomplete method development
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or high similarity to tested methods. These excluded protocols
comprise single-stranded cDNA library synthesis??> (owing to
chimeric cDNAs created); deep sequencing of ribosome-protected
mRNA fragments'* (because cDNA lengths are too short, and the
original method involves a complex procedure for RNA prepara-
tion; we included published data from the nonprotected library
designated as the 3’ split adaptor method; Supplementary Fig. 1);
Helicos single-molecule digital gene expression?* and direct RNA
sequencing?* (coverage heavily biased to the 5" or 3’ ends of tran-
scripts, respectively; the latter is currently still under development);
and ligation of adaptor to 5" end and C-tailing at 3" end of RNA?>
and the double-random priming method?® (similar to NNSR).
We did not include FRT-seq?” and SOLiD Whole Transcriptome
Analysis kit (Applied Biosystems)?® because they are similar to
the two RNA ligation methods we tested, and it would be difficult
to distinguish differences owing to library construction methods
from those because of the different sequencing methods.

In addition to the formal criteria we evaluated, there is substan-
tial variation in the experimental complexity of different protocols
(Supplementary Table 4). The original RNA ligation method is
the most labor intensive and requires substantial amounts of start-
ing material. The NNSR protocol is the simplest. It is unclear how
well the original RNA ligation method can be adapted to larger
fragments (greater than 152 base pairs) needed for paired-end
sequencing with 76-base reads as it requires the adaptor-ligated
RNA to be separated on a gel from unligated RNA, an increasing
challenge as the length of the RNA increases.

The libraries also vary in the facility of computational analysis,
in particular at early processing steps. The bisulfite method is the
most computationally challenging, as reads must be aligned to
two reference ‘genomes’ that have all the cytosine bases converted
to thymine bases on one of the two strands. This alignment is
complicated both by the imperfect efficiency of the bisulfite treat-
ment and by inherent sequencing errors.

Our analysis allowed us to assess the tradeoff between differ-
ent protocol modifications. For example, we found that actino-
mycin D improved the strand specificity of the NNSR protocol
(Supplementary Table 2) but had the opposite effect on the
coefficient of variation, 5" and 3’ end coverage and correlation of
expression levels (Supplementary Table 2). For the Illumina RNA
ligation libraries, it is preferable to use gel size selection rather than
SPRI because removing the shorter cDNAs increased the fraction of
reads aligning to the yeast genome. If read length is reduced below
76 bases, this may be less of an issue, but such a choice would also
impact other sequencing outputs. Notably, SPRI is amenable to
liquid handling automation and can increase the throughput and
convenience of any of the other methods, except for RNA ligation.
Although these modifications impacted library quality for the
NNSR and Ilumina RNA ligation methods, most of the varia-
tions tested did not alter the performance characteristics of the
libraries (Supplementary Table 2 and Supplementary Figs. 2-4),
an indication of the reproducibility of the methods. We did not
directly evaluate the experimental features, such as PCR condi-
tions or adaptor sequences, that contributed to each method’s
success (or lack thereof) because these may be complex. We note,
however, that the amount of starting material did not correlate
with library complexity (Supplementary Tables 2 and 4).

The dUTP protocol provided the most compelling overall balance
across criteria, followed closely by the Illumina RNA ligation protocol
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(Supplementary Note 1). Currently, the dUTP protocol is compat-
ible with paired-end sequencing, whereas the present Illumina RNA
ligation protocol is not. Paired-end sequencing increases the number
of mappable reads (unique as pairs), and in higher eukaryotes
provides substantial power in transcriptome reconstruction!®!!. The
3’ split adaptor method!# excelled in measures critical for genome
annotation, but was less well suited for expression profiling. Finally,
our compendium and analysis pipeline, which is available online
(http://www.broadinstitute.org/regev/rnaseqmethods/) and will be
provided as a GenePattern module (http://www.broadinstitute.org/
cancer/software/genepattern/), are important resources and include
a general benchmarking dataset and tools for testing the quality of
future libraries.

METHODS
Methods and any associated references are available in the online
version of the paper at http://www.nature.com/naturemethods/.

Accession code. Gene Expression Omnibus: GSE21739 (sequence
and microarray data).

Note: Supplementary information is available on the Nature Methods website.
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ONLINE METHODS

Yeast RNA preparation. We grew S. cerevisiae strains Bb32 and
BY4741 to mid-log phase. We used mid-log phase RNA from
Bb32 for the original RNA ligation and SMART libraries; other
libraries were made from a single sample of BY4741 RNA (the two
strains are closely related and interchangeable for this study). We
made one library (hybrid) from post-diauxic shift BY4741 RNA
(slightly impacting its performance in expression profiling and
not otherwise). We isolated total and poly(A)* RNA and treated
it with Turbo DNA-free (Ambion) as described?.

RNA ligation library. We created the library using a previously
described method?® starting from 1.2 g of poly(A)™ RNA with
these modifications. We fragmented RNA by incubation at 70 °C
for 8 min in 1x fragmentation buffer (Ambion) and isolated 65-80-
nucleotide RNA fragments from a gel. We reverse-transcribed
RNA with SuperScript III (Invitrogen) at 55 °C and amplified the
cDNA with Herculase (Stratagene) in the presence of 5% DMSO
for 16 cycles of PCR followed by a cleanup with 1.8 volumes of
AMPure beads (Agencourt) rather than gel purification.

Illumina RNA ligation library. The Illumina method used a
preadenylated 3" adaptor, which enables the subsequent ligation
of the 5" adaptor without an intermediate purification step. Our
method has been modified from the version provided by Illumina.
We created our libraries starting from 100 ng of poly(A)* RNA as
follows. We decapped RNA by adding 10 U of tobacco acid pyro-
phosphatase (Epicentre), 1 pl of 10x buffer, 40 U of RNaseOut
(Invitrogen) and water in a 10-ul reaction, and incubated it at
37 °C for 90 min, followed by extraction with 25:24:1 phenol:
chloroform:isoamyl alcohol (PCIA; Invitrogen), ethanol precipi-
tation and resuspension in 16 ul of H,O. We fragmented decapped
RNA by heating at 94 °C for 6 min in 1x fragmentation buffer
(Affymetrix), followed by ethanol precipitation and resuspension
in 16 ul of H,O. We 3’ dephosphorylated fragmented RNA by
adding 2 pl of 10x phosphatase buffer, 5 U of Antarctic phos-
phatase (New England Biolabs (NEB)) and 40 U of RNaseOut and
incubating at 37 °C for 30 min followed by 5 min at 65 °C before
chilling on ice. We 5" phosphorylated the RNA by adding 5 pl of
10x PNK buffer, 20 U of T4 polynucleotide kinase (NEB), 5 ul of
10 mM ATP (Epicentre), 40 U of RNaseOut, 17 ul of water and
incubating at 37 °C for 60 min. We adjusted the reaction volume
to 100 ul with water and cleaned up with the RNeasy MinElute kit
(Qiagen) following the instructions of the manufacturer except
400 pl of 100% ethanol were used in step two. We concentrated
RNA to 6 ul by Vacufuge (Eppendorf), followed by mixing with
1 ul 1x v1.5 SRNA 3" adaptor (Illumina), incubating at 70 °C for
2 min and chilling on ice for 2 min. We prepared the 3’ ligation
with this RNA adaptor mix, 1 ul 10x T4 RNA ligase 2 trun-
cated reaction buffer, 0.8 ul of 100 mM MgCl, (Sigma), 20 U
of RNaseOut, 300 U of T4 RNA ligase 2, truncated (NEB) and
incubated at 22 °C for 1 h. We denatured 1 pl of SRA 5" adap-
tor (Illumina) at 70 °C for 2 min and chilled it on ice before
combining it with the 3" adaptor-ligated RNA, 1 pl of 10 mM
ATP and 1 pl of T4 RNA ligase (Illumina) and incubating at
20 °C for 1 h. We combined 12 pl of this doubly adaptor-ligated
RNA with 3 pl of 0.2x SRA reverse transcription (RT) primer
(Illumina), followed by incubation at 70 °C for 2 min, and chilling
on ice. We synthesized single-stranded cDNA with this
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RNA primer mix by adding 6 pl 5x first-strand buffer, 6 pl
100 mM DTT, 1.5 pl 12.5 mM dNTPs, 600 U SuperScript III
and 30 U SUPERase-In (Ambion) and incubating for 1 h at
55 °C. We divided the cDNA into two aliquots that we processed
with different size selection methods yielding libraries with dif-
fering insert lengths. In the first method, we mixed two-thirds of
the cDNA with 5 U RNase H (NEB), incubated at 37 °C for 1 h and
75 °C for 15 min, PCIA extracted, ethanol precipitated and resus-
pended in 10 ul H,O. We selected single-stranded cDNA rang-
ing in size from 175 to 225 nt on a Criterion 10% TBE-urea gel
(Bio-Rad). We crushed the gel slice and eluted with 250 ul 0.3 M
NaCl by rotating at room temperature (20-23 °C) for over 4 h. We
filtered the crushed gel slice and buffer mixture through a Spin-X
cellulose acetate filter (Corning) by centrifugation at 16,000g
for 3 min. We ethanol-precipitated the eluate and resuspended
it in 10 pul RNase-free water. We prepared a 50 pul PCR with 5 ul
water, 25 pl 2x Phusion High-Fidelity Master Mix with GC buffer
(NEB), 13 pl 5 M betaine (Sigma), 1 pl each primer GX1.0 and 2.0
(Illumina) and 5 pl size-selected cDNA. Thermocycling condi-
tions were: 30 s at 98 °C, 14 cycles of 98 °C for 10's, 60 °C for 30s,
and 72 °C for 15 s, followed by 10 min at 72 °C. We removed PCR
primers using 1.8 volumes of AMPure beads. This generated a
cDNA library ranging in size from 180 to 240 base pairs (bp)
(insert size of 110-170 bp). In the second method (SPRI), we used
one-sixth of the cDNA without size selection in a 50 pul PCR pre-
pared as in the first method. We purified the PCR product twice
with 1.3 volumes of AMPure beads to generate a library ranging
in size from 120 to 250 bp (insert size of 50-180 bp).

SMART library. We adapted the SMART method?° developed for
SOLiD* to Illumina Genome Analzyer sequencing. In our method,
reverse transcriptase-primed cDNA synthesis with an oligonucle-
otide comprised of an Illumina adaptor sequence 5" of a random
hexamer, added three nontemplate cytosine nucleotides at the
3’ end of the cDNA, followed by template switching to a second
oligonucleotide containing a second Illumina adaptor sequence
5’ of three guanine ribonucleotides. Specifically, we created the
SMART library starting from 100 ng of poly(A)* RNA as follows.
We fragmented RNA by heating at 98 °C for 40 min in 0.2 mM
sodium citrate, pH 6.4 (Ambion), followed by concentrating it
to 3.5 ul, mixing with 1 pul 2 uM SMART tagged random primer,
incubating at 70 °C for 10 min and chilling on ice for 2 min.
(Sequences of all custom primers used in this study are listed in
Supplementary Table 5.) We synthesized first-strand cDNA from
this RNA primer mix by adding 2 ul 5x buffer, 1 pl 20 mM DTT,
0.5 ul 10 mM dNTPs, 50 U SMART Scribe reverse transcriptase
(Clontech), and 10 U SUPERase-In and incubating at room tem-
perature for 10 min followed by 45 min at 42 °C. We denatured
1 ul 10 uM 5" SMART oligo at 70 °C for 5 min and added it to
the cDNA synthesis reaction, which we then incubated at 42 °C
for another 15 min and chilled on ice. We cleaned up the cDNA
using 1x volume of AMPure beads and eluted with 20 pl of elu-
tion buffer (Qiagen). We prepared a 160 pul PCR with 96 ul water,
16 ul 10x HF 2 PCR bulffer, 16 ul 10x HF 2 ANTP mix, 6.4 pul
25 uM primer PE 1.0 (Illumina), 6.4 pul 5uM SMART reverse
primer, 3.2 pul 50x Advantage-HF 2 polymerase mix (Clontech)
and 16 pl cDNA. Thermocycling conditions were: 5 min at 94 °C,
19 cycles of 94 °C for 15 s and 68 °C for 30 s. We PCIA extracted,
ethanol precipitated and resuspended the PCR products in 10 pul
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H,0. We selected PCR products ranging in size from 220 to 420 bp
on a 4% NuSieve 3:1 agarose (Lonza) TAE gel and purified them
with the MinElute Gel Extraction kit (Qiagen).

SMART-RNA ligation ‘hybrid’ library. The SMART-RNA ligation
(‘hybrid’) library combined ligation of an RNA adaptor to the 3" end
of fragmented RNA with SMART’s template switching to attach a
second adaptor at the 3 end of the cDNA. We created the library
starting from 500 ng poly(A)* RNA as follows. We fragmented RNA
as described for the SMART library and dephosphorylated it with
1.5 ul 10x buffer 3 (NEB), 15 U calf intestinal alkaline phosphatase
(NEB), 40 U RNaseOut and water in a final volume of 15 pl for
1 hat 37 °C and then chilled it on ice. We PCIA extracted, ethanol
precipitated and resuspended this RNA in 5 ul H,O. We denatured
this RNA and 1 pl 4 uM 3" RNA adaptor oligo at 70 °C for 2 min,
chilled them on ice, combined them with 40 U RNaseOut, 1 pl
100% DMSO (NEB), 10 U T4 RNA ligase (Promega), and 1 ul
10x T4 RNA ligase buffer, and incubated for 6 h at 20 °C and then
4hat4°C. We cleaned up adaptor-ligated RNA using 1.8 volumes
of RNAClean beads (Agencourt) and eluted with 10 ul water. We
repeated this process to minimize the amount of unincorporated
RNA adaptor oligos. We used half of this RNA for cDNA synthesis
as described for the SMART library, except we used 1 ul 10 uM
Hybrid reverse transcription primer in the reverse transcription
reaction for 45 min at 42 °C before adding the 5" Hybrid oligo.
We degraded RNA by adding 2.5 U RNase H, 1.5 pl 10x RNase
H buffer, 3 pl water and incubating at 37 °C for 1 h. We PCIA
extracted, ethanol precipitated and resuspended the cDNA in 6 ul
H,0. We selected single stranded cDNA ranging in size from 300
to 500 nt on a Criterion 5% TBE-Urea gel and eluted it as described
for the Illumina RNA ligation library. We prepared a 125 pl PCR
with 2.5 pl water, 62.5 ul 2x Phusion High-Fidelity Master Mix with
GC bulffer, 50 pl 5 M betaine, 2.5 ul each 25 uM Hybrid forward
and Hybrid reverse primers and 5 Ul size-selected cDNA. Thermo-
cycling conditions were: 30 s at 98 °C, 5 cycles of 98 °C for 10 s,
50 °C for 30 s and 72 °C for 30's, 13 cycles of 98 °C for 10's, 65 °C
for 30 s and 72 °C for 30 s, followed by 5 min at 72 °C. We removed
PCR primers using 1.8 volumes of AMPure beads.

NNSR library. We modified the original NSR method?!, which
creates a strand-specific library, by replacing the ‘not so random’
primers for cDNA synthesis with random (or ‘not not so random’)
primers. The NNSR method used two different primers, each
comprised of a different adaptor sequence and random hexamers,
for first- and second-strand cDNA synthesis. We created the
NNSR library starting from 250 ng of poly(A)* RNA. We con-
centrated RNA to 5 pl, mixed it with 2 ul of 100 uM tagged first-
strand NNSR primers, incubated them at 65 °C for 5 min and
placed them on ice. We synthesized first-strand cDNA with this
RNA primer mix by adding 4 pl of 5x first-strand buffer, 2 ul of
100 mM DTT, 1 pl of 10 mM dNTPs, 4 g actinomycin D (USB),
200 U SuperScript IIT and 20 U SUPERase-In and incubating at
45 °C for 30 min followed by 15 min at 70 °C. We PCIA extracted
twice, ethanol precipitated and resuspended first-strand cDNA
in 10 ul H,O. We treated it with RNase H in 1x RNase H buffer at
37 °C for 20 min followed by 15 min at 75 °C, clean up using 1.8
volumes of RNAClean beads and elution with 30 pl water. We
synthesized second-strand cDNA in a 100 pl reaction by adding
10 ul 10x buffer 2 (NEB), 5 ul 10 mM dNTPs, 20 U Klenow
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Fragment (3" to 5" exo™; NEB), 10 ul of 100 uM tagged second-strand
NNSR primers and water and incubating at 37 °C for 30 min.
We purified the cDNA with 1.8 volumes of AMPure beads. We
prepared a 50 ul PCR with 9.5 pl water, 10 ul of 5% reaction buffer 2,
2.5 ul of 10 mM dNTP mix, 5 ul of 25 mM MgCl,, 5 pl of each
10 uM NNSR forward and NNSR reverse primers, 0.5 pl of
Expand”VS enzyme (Roche) and 12.5 pl cleaned up cDNA.
Thermo-cycling conditions were: 2 min at 94 °C, two cycles of 94 °C
for 10's,40 °C for 2 min and 72 °C for 1 min; eight cycles of 94 °C for
10 s, 60 °C for 30 s and 72 °C for 1 min; four cycles of 94 °C for
15, 60 °C for 30 s and 72 °C for 1 min with an additional 10 s
added at each cycle; 72 °C for 5 min. We purified PCR products
using 1.8 volumes of AMPure beads. We selected PCR products
ranging in size from 325 to 525 bp on a Criterion 10% TBE gel and
eluted them as described for the Illumina RNA ligation library.

We made a second NNSR library in parallel without actino-
mycin D.

Bisulfite libraries. We created the ‘H” and ‘S’ bisulfite libraries
using two previously described methods!>!®, respectively, starting
from 1 pg of poly(A)* RNA with the following modifications. The
S library bisulfite reaction followed the 6x cycles for human 28S
RNA treatment!® and was ethanol precipitated before and after
desulfonation. We cleaned up the H library bisulfite reaction with
an Amicon Ultra-15 3k MWCO filter (Millipore) centrifuged at
4,000g at 25 °C for 50 min. In subsequent steps we followed a pre-
viously published procedure!>, except as noted. We synthesized
first-strand cDNAs from 100 ng of bisulfite-treated poly(A)* RNA
with 1.5 pg ‘random octamer’ mixture, prepared as described!®,
in a 40 pl reaction for 10 min at 25 °C followed by 60 min at
55 °C. We synthesized second-strand cDNA with 5x second-strand
buffer (Invitrogen) in a 300 pl reaction. Because bisulfite treatment
fragmented the RNA (data not shown), it was not necessary to
fragment the cDNA. We prepared a paired-end library for Illumina
sequencing as for the dUTP library, except that we gel-purified the
final PCR products with an insert size of 160-300 bp.

dUTP library. We created the dUTP second strand library start-
ing from 200 ng of poly(A)* RNA using a previously described
method!? with the following modifications. All reagents were
from Invitrogen except as noted. We fragmented RNA as
described for the SMART library, concentrated it to 5 pl, mixing
with 3 pg random hexamers, followed by incubation at 70 °C for
10 min and chilling on ice. We synthesized first-strand cDNA
with this RNA primer mix by adding 4 ul 5x first-strand buffer,
2 ul 100 mM DTT, 1 ul 10 mM dNTPs, 4 ug of actinomycin D,
200 U SuperScript III and 20 U SUPERase-In, incubating at room
temperature for 10 min followed by 1 h at 55 °C. We cleaned up
first-strand cDNA by PCIA extraction twice, ethanol precipitation
with 0.1 volumes 5 M ammonium acetate to remove dNTPs and
resuspension in 104 ul H,O. We synthesized second-strand cDNA
by adding 4 ul of 5x first-strand buffer, 2 ul of 100 mM DTT,
4 ul of 10 mM dNTPs with dTTP replaced by dUTP (Sigma), 30 ul
of 5x second-strand buffer, 40 U of Escherichia coli DNA polymer-
ase, 10 U of E. coli DNA ligase and 2 U of E. coli RNase H, and
incubating at 16 °C for 2 h. We prepared a paired-end library for
[lumina sequencing according to the instructions provided, with
the following modifications. First, we ligated five times less adaptor
mix to the cDNAs. Second, we incubated 1 U USER (NEB) with
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180 to 480 bp size-selected, adaptor-ligated cDNA at 37 °C for
15 min followed by 5 min at 95 °C before PCR. Third, we per-
formed PCR with Phusion High-Fidelity DNA polymerase with
GC buffer and 2 M betaine. Fourth, we removed PCR primers
using 1.8 volumes of AMPure beads.

In addition, we made a second cDNA library in parallel with
2.7 pg random hexamers plus 1.1 ug anchored oligo(dT),,
(Invitrogen) in the first-strand synthesis.

‘Control’ (non-strand-specific) library. We prepared a control
library that used dTTP instead of dUTP for second-strand cDNA
synthesis at the same time as the dUTP library. In addition, we
made a second control cDNA library in parallel with 2.7 pg of
random hexamers plus 1.1 pg of anchored oligo(dT),, in the first-
strand synthesis.

Illumina sequencing. We sequenced each of the cDNA librar-
ies with an Illumina Genome Analyzer II (one or two lanes of 76
base reads) using the standard SBS3 and SBS8 sequencing prim-
ers (Illumina), except as noted below. We sequenced the SMART
library with the standard SBS3 primer for the first read and the
custom SBS11 primer for the second read; both reads were
51 bases. We sequenced the RNA ligation and Illumina RNA liga-
tion libraries with the small RNA sequencing primer (Illumina).
The NNSR, SMART and Hybrid libraries have a short, identical
sequence at the start of every read that leads to ‘monotemplate’
issues during cluster image processing (Supplementary Note 2).

Library read mapping. For SMART, Hybrid and NNSR libraries,
we trimmed reads before mapping, to remove specific adaptor-
derived bases expected at the start of the read. We mapped reads
using Arachne!”. We mapped reads in single end libraries uniquely,
allowing up to four mismatches. We first mapped reads in paired-
end libraries non-uniquely allowing up to four mismatches and
then searched for unique pairing of the non-unique read mappings
(a single pair of mappings on the same chromosome, up to 500 bp
apart, with reads on opposite strands). For the bisulfite libraries,
we first converted each ‘C’ in the genome to “T’, resulting in two
pseudo-genomes (one per strand), to which the reads were mapped
(a unique read mapped to a single location in exactly one of those
pseudo genomes).

Read sampling and trimming. We sampled 2.5 million mapped
read ‘starts’ from the aligned reads of each library, with the excep-
tion of the SMART and Bisulfite ‘H’ libraries where we used all
reads (~0.9 million and 2.1 million reads, respectively), owing
to their repeated low yields. (Resampling these libraries to
2.5 million did not change the results substantially, data not
shown.) As the libraries have various read lengths, we used only
the first 36 bases of each mapped read (the shortest fragment
length in our compendium). We used the sampled 36 base
extended coverage for all subsequent method comparison.

Library complexity. We calculated the fraction of reads starting
at a distinct (unique) genomic location. In paired libraries we
measured the fraction of pairs whose combination of start and
end locations was unique, as a proxy for the number of unique
cDNAs loaded on the sequencer.

NATURE METHODS

Strand specificity. We used the known annotation from
(Saccharomyces Genome Database (SGD), http://www.
yeastgenome.org/; downloaded in November 2007), and pub-
lished estimates of UTR lengths!8, or when absent an estimation
of 100 bp for each of the UTRs. We considered only high-quality
annotations (‘verified” or ‘uncharacterized’; SGD) and excluded
all regions with annotated overlapping transcripts (at UTRs or
ORFs) and all genes designated as ‘dubious’. We calculated the
number of reads that map to the sense and opposite strand of
known transcripts.

Evenness of coverage. We used the known annotation from SGD,
divided the length of each gene into 100 bins of equal length and calcu-
lated the relative coverage in each bin compared to the entire gene. We
averaged across all ‘verified’ and ‘uncharacterized’ annotated genes.

Continuity of coverage. We measured for each gene the fraction
of the gene’s total length that had no read coverage. We plotted
these values against the relative expression of the gene based on
a ‘pooled’ library (below) and calculated in each plot the Lowess
fit of these data (Matlab version 2009b; MathWorks). For each
gene, we also counted the number of segments of length 5 bp or
longer that had no read coverage. We averaged these measure-
ments across all genes, weighting by the relative expression of
each gene.

Comparison to S. cerevisiae annotation of 5’ and 3’ ends.
Conservatively, we used known annotation of verified and
uncharacterized genes (SGD). For each end, we measured the
number of genes where a window of ten bp around the translation
start and end sites was fully covered by aligned reads.

Expression. We used three standards: microarray data, the
‘control’ library and a ‘pooled’ library with 2.5 million sampled
mapped reads from each of nine strand-specific libraries (RNA
ligation, Illumina RNA ligation, SMART, Hybrid, NNSR, bisulfite,
our dUTP, published dUTP and 3’ split adaptor). For each library,
we calculated the relative expression level of known genes (SGD)
by calculating the mean coverage over the coding region length,
and normalizing it to a distribution over all genes*. We compared
each library to each reference using the Pearson correlation
coefficient and the r.m.s. error measures. We also generated
scatter, Q-Q and MA plots for each library-reference pair.

MA and Q-Q plots. Both plots compare two sets of data (D,, D,).
An MA plot displays the log,(D,) + log,(D,) versus log,(D,) —
log,(D,). If the samples are very similar, they should be close to
the y = 0 axis regardless of the x-axis position. A Q-Q plot dis-
plays a quantile-quantile plot of D, (x axis) and D, (y axis). If the
samples were drawn from the same distribution, the plot should
be a straight line.

Microarray data. Microarray data preparation methods are
described in Supplementary Note 3.

32. Cloonan, N. et al. Stem cell transcriptome profiling via massive-scale
mRNA sequencing. Nat. Methods 5, 613-619 (2008).
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Background: Recent studies in budding yeast have shown that antisense transcription occurs at many loci.
However, the functional role of antisense transcripts has been demonstrated only in a few cases and it has been
suggested that most antisense transcripts may result from promiscuous bi-directional transcription in a dense

Results: Here, we use strand-specific RNA sequencing to study anti-sense transcription in Saccharomyces cerevisiae.
We detect 1,103 putative antisense transcripts expressed in mid-log phase growth, ranging from 39 short
transcripts covering only the 3" UTR of sense genes to 145 long transcripts covering the entire sense open reading
frame. Many of these antisense transcripts overlap sense genes that are repressed in mid-log phase and are
important in stationary phase, stress response, or meiosis. We validate the differential regulation of 67 antisense
transcripts and their sense targets in relevant conditions, including nutrient limitation and environmental stresses.
Moreover, we show that several antisense transcripts and, in some cases, their differential expression have been
conserved across five species of yeast spanning 150 million years of evolution. Divergence in the regulation of
antisense transcripts to two respiratory genes coincides with the evolution of respiro-fermentation.

Conclusions: Our work provides support for a global and conserved role for antisense transcription in yeast gene

Background

Antisense transcription plays an important role in gene
regulation from bacteria to humans. While the role of
antisense transcripts is increasingly studied in metazoans
[1], less is known about its relevance for gene regulation
in the yeast Saccharomyces cerevisiae, a key model for
eukaryotic gene regulation. Recent genomic studies
using tiling microarrays showed evidence of stable anti-
sense transcription in S. cerevisiae [2,3] and Schizosac-
charomyces pombe [4,5].
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It is unclear how broad the role of antisense transcrip-
tion is and what key functional processes in yeast it
affects. A few functional antisense transcripts have been
implicated in the control of several key genes, including
the meiosis regulator gene IME4 [6], the phosphate
metabolism gene PHO84 [7], the galactose metabolism
gene GALI10 [8], and the inositol phosphate biosynthetic
gene KCSI [9]. In contrast, genome-scale analysis in
yeast suggested that antisense transcripts largely arise
from bi-directional, possibly promiscuous, transcription
from nucleosome free regions in promoters or 3' UTRs
of upstream protein coding genes [2,3]. The ability to
massively sequence cDNA libraries (RNA-seq) can facili-
tate the discovery of novel transcripts [10-12], but most
studies have not distinguished the transcribed strand.

Here, we used massively parallel sequencing to
sequence a strand-specific cDNA library from RNA iso-
lated from S. cerevisiae cells at mid-log phase. We

© 2010 Yassour et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.
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found 1,103 putative antisense transcripts in those cells,
ranging from short ones that cover only the 3' UTR of
sense genes to over a hundred long ones that cover the
entire sense ORF. Many of the putative sense targets
encode proteins with important roles in stationary
phase, stress responses, or meiosis. We validated the dif-
ferential regulation of 67 antisense transcripts and their
sense targets in conditions ranging from nutrient limita-
tion to stress, and show that the exosome component
Rrp6 affects their levels, but that the histone deacetylase
Hda2 does not. Furthermore, for a few examples we
show that antisense transcripts and their differential reg-
ulation are conserved over 150 million years across five
yeast species. Our results support a potential conserved
role for antisense transcription in yeast gene regulation.

Results

Strand-specific RNA-seq of S. cerevisiae cells

To identify antisense transcripts in yeast, we used mas-
sively parallel sequencing (Illumina) to sequence a
strand-specific cDNA library from S. cerevisiae during
mid-log growth in rich media. The approach we used
[13] relies on the incorporation of deoxy-UTP during
the second strand synthesis, allowing subsequent selec-
tive destruction of this strand (Materials and methods).
Our sequencing yielded 9.22 million 76-nucleotide
paired-end reads that map to unique positions in the
genome.

Of the reads that map to regions with a known anno-
tation for uni-directional transcription (from the Sac-
charomyces Genome Database (SGD) [14]), only 0.62%
were mapped to the opposite (antisense) strand, demon-
strating the strand-specificity of our library [15] (Materi-
als and methods). We next combined these reads to
define consecutive regions of strand-specific transcrip-
tion (Materials and methods), and found 8,778 units,
covering 4,944 of the 5,501 (90%) genes expressed in
this condition (top 85% [12]) at the correct orientation,
for at least 80% of the length of each gene (Materials
and methods; Additional files 1 and 2).

Identification of 1,103 antisense transcripts that vary in
sense coverage from the 3’ UTR to the entire ORF

We found 1,103 putative units that have an antisense
orientation relative to annotated transcripts and cover at
least 25% of a known transcript on the opposite strand,
using published UTR estimates [2] (Materials and meth-
ods; Additional file 1). While antisense reads are only a
small minority (0.62%) of the total reads, they aggregate
in a relatively small number of loci, with 62% of the
antisense reads concentrated in the 1,103 units we
defined. The remaining 38% are mostly isolated reads
scattered across the genome (Figure S1 in Additional
file 3).

Page 2 of 14

We observe a range of antisense unit lengths (Figure
S2 in Additional file 3). At one extreme are 39 units
that cover at least 25% of the transcript but none of the
ORF, most commonly at the 3" UTR (for example,
Unit3689, a putative antisense transcript to NOPI10; Fig-
ure la). Other units cover a substantial portion of the
sense ORF. For example, 438 units overlap with at least
50% of the sense ORF, and 145 units cover the entire
sense ORF (for example, Unit4966, a putative antisense
to the MBRI gene; Figure 1b). In some cases a single
sense gene may be covered by more than one antisense
unit, most likely due to low antisense expression levels
that result in gaps in coverage (for example, Unit8753,
Unit8754, Unit8756 and Unit8758 all opposite to the
OPT2 gene; Figure S3 in Additional file 3). To avoid
spurious or ‘gapped’ calls by our automatic method, we
manually inspected each of the units, and focused on
the 402 units that passed manual inspection and overlap
at least 75% of a sense ORF (Materials and methods).

The 402 antisense units are supported by several lines
of evidence. First, comparing the units to published data
from strand-specific tiling arrays [2], we find that 143 of
our 402 units (36%) are at least 80% covered by stable
antisense units as previously defined [2], while 224 units
were not detected at all on tiling arrays (Additional file
1; Materials and methods). Finally, 336 of the 402 units
are supported by an independent RNA-seq experiment
we conducted using an RNA ligation protocol [16] for
strand-specific library preparation (Materials and meth-
ods) [15]. The lower number of units detected using the
independent library reflects the less continuous nature
of the data collected by the alternative protocol [15].

Antisense units are unlikely to result solely from
leaky transcription
We next assessed the previously suggested possibility
[2,17] that antisense transcription is a consequence of
leaky transcriptional regulation, through either untermi-
nated transcription, bi-directional transcription initiation
from promoters, or transcription from potential nucleo-
some-free regions (NFRs) in 3' UTRs. We found that 48
and 27 units might reside within a long 3’ or 5’ UTR,
respectively. Of the remaining 333 antisense units, 149
appear to share the (divergent) promoter of a known
neighbor transcript, consistent with previous reports
[2,3]. An additional 43 units may be transcribed from
potential NFRs in the 3’ UTR of an adjacent transcript
[18]. The remaining 141 units (35%) cannot be
accounted for by transcription from a known promoter
or 3' UTR (when considering 400-bp margins; Figure S4
in Additional file 3).

We compared the change in expression of antisense
units and such neighboring genes between cells grown
in rich media containing glucose (yeast peptone dextrose
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Figure 1 Strand-specific RNA-seq identifies 1,103 antisense units associated with stationary phase, stress, and meiosis genes in
S. cerevisiae. (a) Typical short antisense (Unit3689, antisense to NOP10). Shown are reads mapped from a standard cDNA sequencing library [15]
(yellow), and from the strand-specific library prepared and run side-by-side on the same flow cell (green: forward reads above, reverse reads
below). All coverage tracks were normalized to the total number of reads mapped, and are shown up to a threshold of 3 x 10 of total
mapped reads (genome-wide). Units were called from the strand-specific library (blue units, known genes; orange, putative antisense), and are
shown along with the manually curated units (red) and the known gene annotations from the SGD (gray). (b) Typical long antisense
(ManualUnit225, antisense to MBRT). Tracks are as in (a). The figures are shown using the Integrative Genome Viewer [36].
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(YPD)) and ethanol (yeast peptone ethanol (YPE)) as the
main carbon source [2]. We reasoned that ‘leaky tran-
scription” would result in strong positive correlation in
expression between the antisense transcript and the
neighboring gene. However, we found a very low corre-
lation (R* = 0.07; Figure S5 in Additional file 3), sug-
gesting only weak co-regulation through leaky
transcription, from divergent promoters or 3' NFRs, if at
all. Thus, even among the units that could hypotheti-
cally arise from leaky transcription, there is little if any
evidence of such events.

We also examined the hypothesis that antisense is
transcribed to prevent the neighboring gene from run-
through transcription. Of the 402 units, 72 (18%) end
relatively close (< 200 bp) to the 3’ ends of known genes
(for example, Unit3689 ends close to the NOPI10 gene
shown in Figure 1a). On average, the 3’ UTRs of these
72 genes are shorter than those of other genes (P <
0.0058, Wilcoxon test; Figure S6 in Additional file 3).
This minority of units could thus potentially play a role
in curbing runthrough transcription.

Stress, meiosis and nutrient limitation genes are
associated with antisense transcripts at mid-log phase

To explore the potential function of the antisense units,
we examined the known function and expression pat-
tern of their associated sense transcripts. We found that
the set of ORFs with 75% or more antisense coverage is
enriched for genes induced after the diauxic shift (P < 6
x 107%) or in stationary phase (P < 2 x 10*°), during
stress (P < 2 x 10%7), and in some meiosis and sporula-
tion experiments (for example, 85 of 805 genes induced
at 8 h in a sporulation time course, P < 3 x 10°°), and
include multiple central genes in these processes. For
example, the genes encoding the key meiosis proteins
IME4, NDT80, REC102, GAS2, SPS19, SLZ1, RIMY, and
SMK1 are all associated with long antisense transcrip-
tion. This is consistent with previous studies in S.
pombe [4] showing a preponderance of antisense tran-
scription in genes induced during meiosis. Long anti-
sense is also found in many key respiration and
mitochondrial genes, including HAP3, COX8, CYB2,
CYC3, COX5B, MMFI1, NCA3, CYC1, MBRI1, PETI0,
COX12, and ATPI14. Genes from other processes
repressed during mid-log phase are also associated with
long antisense transcripts. Notably, these include at least
five members of the PHO regulon (VITCI, PHOS,
PHMS, ICS2, PHO3) and three genes from the GAL reg-
ulon (GAL4, GAL10, GAL2). This suggests that antisense
regulation may be prevalent across these regulons rather
than at single target genes (as found in [6-8]). Further-
more, the expression of 149 of the antisense transcripts
is inversely related to that of their sense targets, as mea-
sured on tiling arrays [2] in several conditions (glucose
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versus ethanol, versus galactose, and in Arrp6; Figure S7
in Additional file 3). Certain key genes that are highly
expressed in mid-log phase are also associated with
detectable transcription of long antisense units. These
include some of the ribosomal protein genes (for exam-
ple, RPS26A, RPS20), glycolytic enzymes (for example,
CDC19, PGKI), and cell cycle regulators (for example,
PCL2, APC11, ASK1). Nevertheless, these observations
suggest that antisense transcription may be regulated in
a condition-specific manner in S. cerevisiae and may be
involved in the repression of stress, stationary phase and
meiosis genes in rich growth conditions.

Differential regulation of antisense-sense pairs in

nutrient limitation and stress

To test this hypothesis, we first experimentally mea-
sured the existence and differential expression of nine
pairs of sense and antisense transcripts in S. cerevisiae,
where the sense gene was known to be induced and
important in stress or stationary phase states. We used
strand-specific RT-PCR (Materials and methods) fol-
lowed by sequencing to check for the presence of each
sense and antisense transcript in mid-log (rich media),
and found that all of the nine tested antisense units
were present as expected (Additional file 4). Next, we
used strand-specific quantitative real-time PCR (qRT-
PCR; Materials and methods) to quantify the differential
expression of six sense and antisense transcript pairs
between mid-log and early stationary phase. We found
that all six of the pairs were differentially expressed,
with induction of the sense accompanied by repression
of the antisense (Figure 2a; Additional file 5). Third, we
devised a novel assay based on the nCounter technology
for sensitive multiplex measurement of mRNAs [19,20]
(Materials and methods) to measure the absolute level
of expression of the nine pairs across five conditions,
including mid-log, early stationary phase, stationary
phase, high salt and heat shock. We found that the gene
pairs exhibited inverse transcription patterns across all
the tested conditions (Figure 2b). The differential
expression we observed is consistent with antisense
interference with sense expression (Figure 2b; Additional
file 6), and with the known function and regulation of
the sense genes. These included proteins with roles in
respiration and mitochondria (PET10 and MBRI
[21,22]), repression of ribosomal protein gene expression
in stress and poor nutrients (CRFI [23]), and the
response to caloric restriction (CTAI [24]). Thus, differ-
entially regulated antisense transcription may play a role
in the distinction between mid-log non-stress growth
and stationary phase and stress conditions in S.
cerevisiae.

Finally, to test the generality of these suggestive pat-
terns, we expanded the nCounter assay to measure the
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expression of 67 sense-antisense pairs in log-phase, early
stationary phase, and after 15 minutes under heat shock
conditions (Figure 2c; Additional file 6). We found 25
pairs where the sense was induced while the antisense
was repressed in either early stationary phase or heat
shock (12 in early stationary phase, 21 in heat shock, 8
in both), and 12 pairs where the sense was repressed
while the antisense was induced (6 in early stationary
phase, 8 in heat shock, 2 in both). Notably, 17 of the 25
pairs with induced sense and repressed antisense in
early stationary phase (relative to mid-log) involved
sense genes important in respiration, mitochondrial
function, alternative carbon source metabolism and star-
vation response (for example, PET10, MBR1, FMP46,
POT1, MOHI, TKL2, ICL1, CTAI). Conversely, four of
the six pairs with the opposite pattern involved sense
genes with key roles in glycolysis and fermentation (for
example, GPM1, PGK1). Many of the pairs with induced
sense and repressed antisense following heat shock over-
lapped with those responsive to early stationary phase
(consistent with known metabolic changes under stress
[25]). Furthermore, they also included four genes known
to be important under environmental stresses (the regu-
lators CRF1 and MRKI, and the effectors HSP31 and
GRE2). Thus, antisense regulation may play a regulatory
role at coordinating the major metabolic changes in the
diauxic shift and early stationary phase, and some of the
changes in the environmental stress response [21-24].

The exosome component Rrp6 affects antisense levels,
but the histone deacetylase Hda2 does not
To explore the mechanistic regulation of antisense tran-
scription, we measured the expression of the 67 pairs of
sense and antisense units using the nCounter assay in
strains deleted for the exosome component RRP6
(Arrp6), the histone deacetylase HDA2 (Ahda2), or both
(Arrp6Ahda?2). Previous studies [2,7] have suggested that
Arrp6 increases the levels of antisense transcription in
the PHO84 locus, and that Hda2 is required for mediat-
ing the effect of antisense transcription on the sense
transcripts in this locus. If these findings apply more
broadly, we expect higher levels of antisense transcripts
in Arrp6, and a change in the relative levels of sense to
antisense in either the Ahda2 or Arrp6Ahda?2 strains.
We found increased transcription of the antisense
units in the Arrp6 mutant, with a mild reduction of the
sense transcripts (R = -0.36; Figure 3a,c; Figure S8a in
Additional file 3). This is consistent with regulation of
antisense transcript levels by the exosome, and with a
possible, albeit mild, effect of this increase in antisense
on reduction in the level of sense transcripts. We found
only a very mild, if any, effect on either sense or anti-
sense transcripts levels in Ahda2 (Figure 3b; Figure S8b
in Additional file 3), suggesting that Hda2 plays at most
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a very minor independent role in the regulation of our
transcripts. We also found no evidence for a synergistic
effect between the mechanisms, since transcript levels in
the double mutant were very close to those in Arrp6
(Figure S8c in Additional file 3). Finally, the differential
expression of the sense genes between conditions was
not substantially affected in any of these mutants (for
example, R > 0.93 in all conditions; Figure 3d; Figure S9
in Additional file 3), suggesting that relative regulation
itself was not compromised in any of these mutants.
This may be due to a comparable effect of the deletion
in all conditions. Thus, the mechanistic basis of sense-
antisense regulation involved Rrp6, but may be more
complex than that in the simple model suggested for
PHO84 [7].

Evolutionary conservation of six antisense transcripts and
their regulation in five species of yeast

Finally, we tested whether the presence and regulation
of antisense transcripts is conserved in five other species
of yeast. We reasoned that while the biochemical func-
tion and mechanistic basis of each antisense unit may
be distinct or complex, their conservation would provide
additional support for their functional and ancestral role
in gene regulation. We chose five species with diverse
lifestyles and a broad phylogenetic range spanning
approximately 150 million years (Figure 4). These
include three sensu stricto Saccharomyces species (S.
paradoxus, S. mikatae, S. bayanus), a more distant spe-
cies that diverged after the whole genome duplication
(WGD; S. castellii), and one species that diverged pre-
WGD (Kluyveromyces lactis). Importantly, post-WGD
species are known to follow a respiro-fermentative life-
style, repressing the expression of respiration genes (for
example, PET10) in mid-log phase, whereas pre-WGD
species follow a respirative lifestyle without such repres-
sion. We used conserved synteny and gene orthology of
S. cerevisiae loci [26,27] to identify orthologous regions
for candidate antisense transcription in the five species.
We focused on six of the units validated in S. cerevisiae
(PET10, MRK1, MBRI1, CRF1, CTAI, MOHI), used
strand-specific RT-PCR and sequencing to validate the
presence of the orthologous sense and antisense tran-
scripts in each species in mid-log and early stationary
phase, and used strand-specific quantitative real-time
PCR to quantify transcript levels (Additional file 5).

We found that the tested antisense units are largely
conserved in the sensu stricto species, and less so at
increasing evolutionary distances. All six units were
detected in at least one species besides S. cerevisiae. Five
of the six units are present in sensu stricto Saccharo-
myces, and four are still observed in S. castellii and K.
lactis. The absence in K. lactis of an antisense transcript
to the PET10 gene, important for respiratory growth, is
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consistent with its respiratory lifestyle, and suggests that
antisense transcription in this gene may have appeared
after the whole genome duplication. We cannot rule out
the possibility, however, that other antisense units are
present in the K. lactis genome, or that the missing anti-
sense units are expressed under different conditions.
The anti-correlation between sense and antisense units
observed in S. cerevisiae is conserved in most post-
WGD species, but not in the pre-WGD K. lactis. The

differential expression of five sense-antisense pairs
(PET10, MRK1, MBRI, CRF1, CTAI) is conserved in at
least two out of three other sensu stricto species. The
more distant S. castellii shows less conservation of tran-
scriptional regulation, most prominently in the PET10
gene. In contrast, although we could detect four of the
antisense units in K. lactis, their differential expression
was not conserved. This is consistent with the lack of
repression of the corresponding sense gene in mid-log
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stationary phase; green, lower in early stationary phase; black, no change; hatched, no candidate orthologous contig; grey, no antisense
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K. lactis cultures. The absence of antisense (for two
genes) and the observed correlated (rather than anti-
correlated) regulation (for three others) in K. lactis may
reflect either the increased phylogenetic distance or may
be more directly related to the shift to a respiro-fermen-
tative lifestyle. In the latter case, either antisense tran-
scription or its regulatory pattern in those genes may
have evolved concomitantly with the emergence of fer-
mentative growth, and the repression of respiratory
genes, such as PET10 and MBRI. Further experiments
are needed to elucidate this relationship.

Discussion

In this study, we used strand-specific mRNA sequencing
to explore the extent of antisense transcription in yeast,
and found 1,103 putative antisense transcripts expressed
in mid-log phase in S. cerevisiae, ranging from 39 short
ones covering only the 3" UTR of sense genes to 145
long ones covering the entire sense ORF. We focus on
402 long antisense units (each spanning over 75% of a
coding unit). In this category, our sequencing based
methodology allowed us to identify 224 new antisense
transcripts that, in previous studies based on tiling

microarrays [2], were either undetected or annotated as
long UTRs of neighboring genes.

What could be the role of such prevalent antisense
transcription? To date, functional studies have identified
a regulatory role for a few antisense transcripts [6-8],
whereas genome-wide analyses have suggested that anti-
sense transcripts may represent promiscuous leaky tran-
scription from NFRs at the promoter of a neighboring
gene or the 3' UTR of the sense gene [2,3,28]. The
diversity of lengths in our 1,103 antisense units - ran-
ging from long antisense units covering entire ORFs to
shorter ones mostly at the 3’ UTR - suggests that there
may be more than a single underlying mechanism for
their formation and function.

Our results do not support promiscuous or aberrant
transcription as the primary cause of the observed anti-
sense transcripts. We find antisense transcription at
only 18% of the genes. Moreover, many of the units are
long and show robust sequence coverage, in contrast to
what we might expect in a noisy process. Finally, anti-
sense genes are only very weakly correlated to their
neighbors, inconsistent with leaky transcription from
divergent promoters or 3’ NFRs.
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Characterizing the functional effect of each unit
requires delicate assays to disable the antisense unit,
without harming the sense gene, which have been suc-
cessfully performed only in a few examples [6-8]. We
therefore instead examined whether the changes in
expression of sense and antisense are consistent with a
regulatory function. We chose to focus on the long anti-
sense units because they exhibit strong signal in our
data, are less well-studied, are less likely to reflect noise,
and can be verified more rigorously.

We found that the sense transcripts corresponding to
longer antisense units are significantly enriched for key
processes in S. cerevisiae, including stress response, the
differential regulation of growth and stationary phase, and
possibly meiosis and sporulation. The high level of anti-
sense expression is consistent with the repression of these
processes in fast growing yeast, and suggests a potential
global function. Indeed, when we examined the relative
change in expression in sense and antisense units across
multiple conditions using three technologies (tiling arrays
[2], strand-specific qPCR, and nCounter measurements),
we found a strong and consistent anti-correlation between
sense genes and the corresponding antisense units. While
these results are consistent with regulatory function of
antisense units (for example, reduction of antisense tran-
scription leads to increased sense transcription), we cannot
rule out the possibility that anti-correlation can occur
without active regulation of the antisense transcript. For
example, it is possible that when a sense gene is repressed,
there is a relieved hindrance of antisense-transcription.
Notably, we found support for the role of Rrp6 in the reg-
ulation of antisense levels, resulting in an increase in anti-
sense levels in the Arrp6 mutant, and a concomitant,
albeit very mild, decrease in sense levels. We could not
demonstrate a general effect of Hda2 on the levels of
sense or antisense transcripts (either alone or together
with Rrp6), and - in all mutants - the differential expres-
sion of sense and antisense remained highly correlated to
the wild-type regulation. This suggests that it may be chal-
lenging to generalize the mechanisms shown for specific
transcripts (PHO84) to all antisense transcripts.

Independent support for a potential function is the
conservation of expression and regulation of six anti-
sense units tested across five species that have diverged
more than 150 million years ago, suggesting purifying
selection. Notably, previous studies in mammals have
shown that certain non-coding RNAs (that are not anti-
sense) can be conserved at the sequence level [17,29],
but the applicability of such analyses to antisense tran-
scripts that cover ORFs is limited, and hence experi-
mental data are needed to show conservation. We find
that both the presence and the regulation of antisense
transcripts are most diverged in the distant, pre-WGD
species K. lactis. This may reflect either the increased
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phylogenetic distance per se, or an evolved role in regu-
lating respiration genes in post-WGD species. Another
possibility for the lack of conservation in expression or
absence of antisense in S. castellii and K. lactis may be
the presence of RNA interference in these species [30].
Further experiments will be needed to elucidate these
possibilities and characterize the full functional scope of
antisense transcription in yeasts.

Conclusions

Our results expand and strengthen the existing body of
evidence that antisense transcription is a substantial phe-
nomenon in yeast, and not solely a noisy by product of
imprecise transcription regulation. While the mechanism
and function of antisense transcription is still elusive, our
results indicate that antisense transcription is often con-
served and plays a regulatory role in the yeast transcrip-
tional response.

Materials and methods

Supplementary website

All tables, figures, raw sequenced reads, and a link to a
browser with the mapped reads appear on our supple-
mentary website [31].

Strains and growth conditions

Strains are listed in Table 1. Cultures were grown in the
following rich medium: yeast extract (1.5%), peptone
(1%), dextrose (2%), SC Amino Acid mix (Sunrise
Science - San Diego, CA, USA) 2 g/l, adenine 100 mg/],
tryptophan 100 mg/l, uracil 100 mg/l, at 200 RPM in a
New Brunswick Scientific (Edison, NJ, USA) air-shaker.
The medium was chosen to minimize cross-species var-
iation in growth. Following the experimental treatments
described below, stressed and mock cultures were trans-
ferred to shaking water baths.

To generate strain RGV 69(rrp6A::KANMXG6, hda2A::
NatMX4), strain RGV 71(rrp6A::KANMX6) was trans-
formed with a PCR product constructed by using the
pAG25 containing the NatMX4 cassette using the fol-
lowing primers: GTAAAAGTATTTGGCTTCATTAG
TGTGTGAAAAATAAAGAAAATAGATACAATAC-
TATCGACGGTCGACGGATCCCCGGGTT and AAGA
AAGTATATAAAATCTCTCTATATTATACAGGC-
TACTTCTTTTAGGAAACGTCACATCGATGAATTC-
GAGCTCGTT [32]. Correct integration of this
construct was confirmed with the following: (5' left) left
TGGCGTATATGGTTCATTGC; (5 right) GTATGGG
CTAAATGTACGGG; (3’ left) left TGGCGTATATGGT
TCATTGCG; (3' right) GGTTGGAGAGGCAAATTGAG.

Heat shock
Overnight cultures of S. cerevisiae were grown in 650 ml
of media at 22°C to between 3 x 10” and 1 x 10® cell/



Yassour et al. Genome Biology 2010, 11:R87
http://genomebiology.com/2010/11/8/R87

Table 1 Strains and growth conditions
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Strain number  Species Background Genotype Source

BB32 Saccharomyces cerevisiae Gift from Leonid Kruglyak's lab

BY4741 Saccharomyces cerevisiae ~ S288c MATa, his3A1, leu2A0, met15A0, ura3A0 Gift from Andrew Murray's lab
Saccharomyces cerevisiae  BY4741 Same as above with rrp6A:KANMX6 ATCC
Saccharomyces cerevisiae  BY4741 Same as above with hda2A:URA3 Gift from Oliver Rando’s lab
Saccharomyces cerevisiae  BY4741 Same as above with rrp6A:KANMX6, hda2A:NatMX4  This study

NCYC2600 Saccharomyces paradoxus NCYC Stock Center

IFO 1815 Saccharomyces mikatae ATCC

CLIB 592 Saccharomyces castellii CLIB Stock Center

CLIB 209 Kluyveromyces lactis CLIB Stock Center

ATCC, American Type Culture Collection.

ml, ODgoo = 1.0. The overnight culture was split into
two 300 ml cultures and cells from each were collected
by removing the media via vacuum filtration (Millipore
- Billerica, MA, USA). The cell-containing filters were
re-suspended in pre-warmed media to either control
(22°C) or heat-shock temperatures (37°C). Density mea-
surements were taken approximately 1 minute after cells
were re-suspended to ensure that concentrations did not
change during the transfer from overnight media. We
harvested 12 ml of culture at 15 minutes and quenched
by adding to 30 ml liquid methanol at -40°C, which was
later removed by centrifugation at -9°C, and stored
these overnight at -80°C. Cell density measurements
were repeatedly taken every 5 to 15 minutes for the first
2 hours after treatment. Harvested cells were later
washed in RNase-free water and archived in RNAlater
(Ambion - Austin, TX, USA) for future preparations.
Cells were also harvested from cultures just before treat-
ment for use as controls.

Salt stress

Overnight cultures of S. cerevisiae (BB32) were grown in
600 ml of media at 30°C until reaching a final concen-
tration of 3 x 107 and 1 x 10® cell/ml. The culture was
split into two parallel cultures of 250 ml and sodium
chloride was added to one culture for a final concentra-
tion of 0.3 M NaCl. Cells were harvested by vacuum fil-
tration at 15 minutes after the addition of sodium
chloride and from cultures immediately before the addi-
tion of sodium chloride for use as controls (t = 0 min-
utes). Filters were placed in liquid nitrogen and stored
at -80°C and were later archived in RNAlater for future
use.

Diauxic shift

Overnight cultures for each species were grown to
saturation in 3 ml rich medium. From the 3 ml over-
night cultures, 300 ml of rich media was inoculated at
the ODgq corresponding to 1 x 10° cell/ml: S. cerevisiae
0.016, S. paradoxus 0.016, S. mikatae 0.023, S. bayanus

0.016, S. castellii 0.020, and K. lactis 0.024. The density
measurements were taken approximately 1 minute after
cells were re-suspended to ensure that concentrations
did not change during the transfer from overnight
media. Cells were harvested and quenched at a final
concentration of 60% methanol at the mid-log and early
stationary phase time points. Mid-log was taken at the
following ODggg values: S. cerevisiae, 0.35; S. paradoxus,
0.40; S. mikatae, 0.40; S. bayanus, 0.30; S. castellii, 0.35;
and K. lactis, 0.30. The early stationary phase time
points were taken 2 hours after the glucose levels
reached zero. Glucose levels were monitored hourly
using the YSI 2700 Select Bioanalyzer (YSI Life Sciences
- Yellow Springs, OH, USA). ODg values for early sta-
tionary phase time points were: S. cerevisiae, 4.6; S.
paradoxus, 3.9; S. mikatae, 4.3; S. bayanus, 2.8; S. castel-
lii, 3.2; and K. lactis, 5.0. Harvested cells were later
washed in RNase-free water, archived in RNAlater
(Ambion) for future preparations, and frozen at -80°C.

Stationary phase

Stationary phase was done for S. cerevisiae (BB32) only.
This experiment was set up identically to the diauxic
shift, but samples were taken at mid-log, and 5-day time
points. The 5-day samples were taken at the same time
of day as the mid-log samples.

Strand-specific cDNA library

The library was created by modifying the previously
described dUTP second strand method [13]. All reagents
were from Invitrogen (Carlsbad, CA, USA) except as
noted. We fragmented 200 ng of S. cerevisiae polyA™
RNA by heating at 98°C for 40 minutes in 0.2 mM
sodium citrate, pH 6.4 (Ambion). Fragmented RNA was
concentrated to 5 pl, mixed with 3 pg random hexam-
ers, incubated at 70°C for 10 minutes, and placed on
ice. First-strand cDNA was synthesized with this RNA
primer mix by adding 4 pl of 5x first-strand buffer, 2 pl
of 100 mM DTT, 1 pl of 10 mM dNTPs, 4 pg of actino-
mycin D (USB), 200 U SuperScript III, and 20 U
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SUPERase-In (Ambion) and incubating at room tem-
perature for 10 minutes followed by 1 hour at 55°C.
First-strand cDNA was cleaned up by extraction twice
with phenol:chloroform:isoamyl alcohol (25:24:1), fol-
lowed by ethanol precipitation with 0.1 volumes 5 M
ammonia acetate to remove dNTPs and re-suspension
in 104 pl HyO. Second-strand ¢cDNA was synthesized by
adding 4 pl 5x first-strand buffer, 2 pl 100 mM DTT, 4
pl 10 mM dNTPs with dTTP replaced by dUTP (Sigma
- Aldrich, St Louis, MO, USA), 30 ul 5x second strand
buffer, 40 U Escherichia coli DNA polymerase, 10 U E.
coli DNA ligase, 2 U E. coli RNase H and incubating at
16°C for 2 hours. A paired-end library for Illumina
sequencing was prepared according to the instructions
provided with the following modifications. First, five
times less adapter mix was ligated to the cDNAs. Sec-
ond, 1 U USER (New England Biolabs - Ipswich, MA,
USA) was incubated with 180- to 480-bp size-selected,
adapter-ligated cDNA at 37°C for 15 minutes followed
by 5 minutes at 95°C before PCR. Third, PCR was per-
formed with Phusion High-Fidelity DNA Polymerase
with GC buffer (New England Biolabs) and 2 M betaine
(Sigma). Fourth, PCR primers were removed using 1.8x
volume of AMPure PCR Purification kit (Beckman
Coulter Genomics - Danvers, MA, USA).

Strand-specific library based on the RNA ligation method
The RNA ligation library was created using a previously
described method [16] starting from 1.2 pg of polyA”
RNA with the following modifications. RNA was frag-
mented by incubation at 70°C for 8 minutes in 1x frag-
mentation buffer (Ambion) and 65- to 80-nucleotide
RNA fragments were isolated from a gel. RNA was
reverse transcribed with SuperScript III (Invitrogen) at
55°C and cDNA was amplified with Herculase (Agilent -
Santa Clara, CA, USA) in the presence of 5% DMSO for
16 cycles of PCR followed by a clean up with 1.8x
volumes of AMPure beads (Beckman Coulter Genomics
- Danvers, MA, USA) rather than gel purification.

lllumina sequencing

Both ¢cDNA libraries were sequenced with an Illumina
Genome Analyzer II (San Diego, CA, USA). The dUTP
library was sequenced using 1 lane of 76-nucleotide
paired reads, and the RNA ligation library was
sequenced using 2 lanes of 51-nucleotide reads. All
RNA-seq data are available in the Gene Expression
Omnibus [GEO:GSE21739].

Data pre-processing

We used the Arachne mapper [33] to map the reads to
the genome. We next identified consecutive regions of
transcription by segmenting the centers of the paired-
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end segments with coverage >1 and maximum signal
gaps of size 20 nucleotides.

Assessment of the strand specificity of the library

To evaluate the strand specificity of our library, we used
the known annotation from SGD [14], and published
estimates of UTR lengths [2], or when absent an estima-
tion of 100 bp. According to these annotations we
found that only 53,803 reads (0.62%) mapped to the
opposite strand of known transcripts.

Identification of sense and antisense transcriptional units
We assigned a putative unit to a known gene if it is in
the same orientation as the unit and it overlaps the
known transcript boundaries, including published esti-
mates of UTR length [2], or when absent an estimation
of 100 bp was used. When comparing our transcription
units to known annotations in the SGD [14], we exam-
ined the top 85% of expressed genes, as previously
described [12].

Manual annotation of 402 antisense units

We have manually annotated the boundaries of anti-
sense units covering 75% or more of an opposite ORF,
resulting in 402 antisense units covering 75% or more of
412 ORFs.

Comparing the antisense units to published data from
strand-specific tiling arrays

We compared our units to the published catalog of [2]
using the following criteria. For each of our units, we
searched for units in the catalog of [2] that are on the
same strand and overlap it. We chose the unit with the
highest overlap, and required a minimal threshold of
50% overlap.

Functional analysis of sense units

We constructed a gene set from the 377 sense genes, for
which at least 75% of the ORF is covered by an anti-
sense unit, and tested it for functional enrichment using
a collection of functional categories as previously
described [27]. We also tested the genes for enriched
induction or repression in a compendium of 1,400
annotated arrays, as previously described [27].

Identification of candidate regions in other species

We searched for orthologs of the sense gene in other spe-
cies, using our published orthogroup catalog [27], and
used the relative coordinates of the antisense transcripts
in S. cerevisiae relative to the sense gene to predict their
locations in other species. In cases where there were no
clear candidates for orthologs, or the synteny block was
broken [26], we did not define a candidate.
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Strand-specific RT-PCR

Strand-specific RT-PCR followed an adaptation of a
published protocol [34]. Total RNA was isolated from
strain Bb32(3) at late log time point for two biological
replicates. RNA was Turbo DNase treated (Ambion) fol-
lowing the manufacturer’s stringent protocol followed
by phenol chloroform extraction. For each assay, a
gene-specific, strand-specific reverse transcription (RT)
was performed. The four reactions for each sample
were: +RT L-primer (sense), +RT R-Primer (antisense),
+RT no primer, -RT both primers. First strand cDNA
synthesis started RNA denaturation and the hybridiza-
tion of the 2 pmol of gene specific primer. Total RNA
with primer (10 ng) was heated to 70°C for 10 minutes
and incubated on ice for at least 1 minute. A primer tar-
geting ACT1 mRNA was always included as an internal
control for strand specificity. This was followed by add-
ing a Master mix containing 200 U SuperScript III (Invi-
trogen), 40 U RNaseOut (Invitrogen) and 10 mM dNTP
mix for at 55°C for 15 minutes. The enzyme was heat-
inactivated at 70°C for 15 minutes. RNA complementary
to the cDNA was removed by E. coli RNase H (10 U;
Ambion) and remaining RNAs were digested with 20 U
of RNase Cocktail (Ambion) by incubating at 37°C for
20 minutes. PCR was performed for the sense and anti-
sense transcripts independently. We added 5 pl of RT to
each reaction as template with two gene-specific primers
each at 250 nM final concentration (the same primers
that were used for the sense and antisense RT; Addi-
tional file 7), 300 uM dANTP and 1 U of Ampli Taq
Gold (Applied Biosystems - Carlsbad, CA, USA), in a 50
ul reaction. RNA contaminated with genomic DNA was
used as a positive control. The touch down amplification
program used was as follows: incubation of 95°C for 5
minutes followed by 10 cycles of 95°C for 30 s, 60°C for
30 s -1 degree per cycle, 70°C for 45 s, then followed by
17 to 20 cycles of 95°C for 30 s, 50°C for 30 s, 70°C
45 s, 72°C for 10 minutes (a step required for future
Topo TA cloning (Invitrogen)).

Strand-specific RT-PCR across species

Strand-specific RT-PCR across species used an adapta-
tion of a published protocol [35]. Total RNA was iso-
lated from each species at both the mid-log and early
stationary phase time points. Genomic DNA contamina-
tion was removed with Turbo DNase (Ambion) using
the stringent protocol, and phenol:chloroform to extract
the RNA and to inactivate the DNase. For each of the
species two biological replicates of the mid-log and early
stationary phase time points were tested. Four reactions
were performed for each sample: +RT L-primer (sense),
+RT R-primer (antisense), +RT no primer, -RT. The
sense, antisense, and -RT reactions were done with
2 pmol of primer (Additional file 7; only the primers
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with Al in the title were used for the initial RT-PCR,
and all primers used were designed for the target spe-
cies). RT was done with first strand synthesis only in
20-pl reactions, using 4 units of Omniscript reverse
transcriptase (Qiagen - Valencia, CA, USA) and 500 ng
of total RNA. Each reaction was carried out at 50°C for
20 minutes, and heat inactivated at 70°C for 15 minutes.
PCR was conducted as for the S. cerevisiae RT-PCR
described above.

Strand-specific qRT-PCR across species

The same RT protocol was followed for the qRT-PCR
across species as for the RT PCR above. For each sense-
antisense pair validated, two sets of primers were tested,
and primers for two internal control genes (ACTI and
PDA1) were included in each reaction. Control primers
('right primer’, Additional file 7) were added at a con-
centration of 2 pmol to each of the RT reactions. qPCR
was done using the Roche Light Cycler 480 in 12-ul
reactions in a 384 well plate (Roche - Indianapolis, IN,
USA). qPCR was done independently for sense, anti-
sense, and control genes. RT samples were diluted 1:40
in water then 1:2 in Light Cycler 480 SYBR Green I
Master with gene specific primer pair (each primer at
200 nM final concentration). The program protocol
used was as follows: activation, 95°C for 5 minutes;
cycling, 95°C for 15 s and 60°C for 45 s; melt, 95°C
continuous.

Analysis of strand-specific qRT-PCR data

The ratios reported in Additional file 5 and Figure 2a
are log, ratios of early stationary phase and mid-log
qRT-PCR reads (after normalization by the control gene
PDA1), averaged over the two sets of primers and the
two biological repeats.

nCounter measurements

The following experiments were done in biological
duplicates: heat shock - 0 and 15 minutes; salt stress - 0
and 15 minutes; diauxic shift - log and early stationary
phase; and stationary phase - log and 5 days. Details on
the nCounter system are presented in full in [20]. In a
nutshell, the nCounter system uses pre-defined probes
labeled with molecular barcodes ('code sets’) and single
molecule imaging to detect and directly count millions
of unique transcripts (from up to hundreds of genes) in
a single reaction. The assay is performed in cell lysates,
involves no enzymatic steps prior to detection, and is
highly accurate. Code sets were constructed to detect
putative antisense units and sense genes and additional
controls (Additional file 8). We lysed 7 x 107 (or 2 x
107, depending on the code set) cells according to the
RNeasy (Qiagen) yeast mechanical lysis protocol. The
protocol was stopped after spinning the lysate to remove
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debris, and 3 pl of the lysate was hybridized for 16
hours followed by processing in the nCounter Prep Sta-
tion and quantification by the nCounter Digital Analy-
zer. We normalized the nCounter data in two steps as
previously described [19]. In the first step, we controlled
for small variations in the efficiency of the automated
sample processing. To this end, we followed the manu-
facturer’s instructions, and normalized measurements
from all samples analyzed on a given run to the levels of
a chosen sample (in all cases we used the first sample in
the set). This was done using the positive spiked-in con-
trols provided by the nCounter instrument. In the sec-
ond step, we used the control genes for which we
designed probes to normalize for sample variation.

Additional material

Additional file 1: Table S1. Strand-specific (sense and antisense)
transcribed units in mid-log S. cerevisiae.

Additional file 2: Table S2. Sense and antisense coverage of SGD
annotated genes.

Additional file 3: Figure S1 to S9. Figure S1: read coverage at antisense
units. (a,b) The distribution (a) and cumulative distribution (CDF) (b) of
read coverage at antisense units ‘called’ by our method (gray) and at all
other loci in the genome with at least one antisense read (orange). The
called units have substantially deeper coverage, whereas 80% of sporadic
loci are covered by a single read. (c) Sense coverage (x-axis) versus
antisense coverage (y-axis) of all verified genes. Genes that we have
detected antisense units opposite them are shown in orange. Figure S2:
statistics for transcription units. (a) Distribution of antisense unit length,
colored by the percentage of overlap with the opposite ORF. Dark blue,
units with at least 25% overlap with the opposite transcript; light blue,
units with at least 50% overlap with the opposite ORF; green, units with
at least 75% overlap with the opposite ORF; orange, units with 100%
overlap with the opposite ORF. (b) Cumulative distribution function of
the units length. Blue, antisense units; red, other units. Figure S3: an
example of an over-segmented antisense unit. Shown is the genomic
region of OPT2; tracks and colors are as in Figure 1, with the addition of
the brown tracks showing the centers of the paired end segments
(forward and reverse), which were used for the segmentation (Materials
and methods). All coverage tracks are normalized and shown up to a
threshold of 3 x 10 of the total (genome-wide) number of mapped
reads. Due to low read coverage, both the sense (blue) and the
antisense units (yellow) are over-segmented. After the manual curation of
the antisense units, we defined one long antisense unit (ManualUnit402)
that covers the entire ORF of the gene OPT2. The figure is shown using
the Integrative Genome Viewer [36]. Figure S4: promoter types associated
with antisense units. Shown are two examples of promoter types of
antisense units; tracks and colors as in Figure 1. ManualUnit69 included
the BTT1 gene, and a very long 3’ UTR, as an antisense to the gene
MET32. ManualUnit70 is a long antisense to the gene CTAT, and is
transcribed from the divergent promoter of RMDS. The figures are shown
using the Integrative Genome Viewer [36]. Figure S5: correlation between
differential expression of antisense units and their neighboring (non-
overlapping) genes. Expression of antisense units versus neighboring
genes, which could be co-regulated (using published tiling array data
[2]). Shown is the log ratio of change from glucose (YPD) to ethanol
(YPE). Blue, antisense units with shared promoter (as in Figure S3 in
Additional file 3); red, antisense units with a nearby 3" UTR; green, linear
fit. Figure S6: differences in UTR length between genes with nearby
antisense units, compared to all genes. Cumulative distribution of the
UTR lengths of all genes (blue) and those with antisense units ending
close to the 3’ UTR end. Figure S7: differential expression of antisense
units and their target sense transcripts. (@) Expression of sense versus
antisense units (using published tiling array data [2]). Shown is the log
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ratio of change in sense gene expression from YPD to YPE (x-axis)
plotted versus the same for the antisense strand (y-axis). Red,
differentially expressed genes; green, linear fit. (b,c) The same as (a), only
comparing YPD to galactose growth and to an rrp6 deletion mutant,
respectively. Figure S8: mutant effect on transcription. (a-c) Expression
changes of the sense genes (x-axis) versus expression changes of the
antisense units (y-axis) in the Arrp6 mutant (a), the Ahda2 mutant (b), and
the Arrp6Ahda2 mutant (c). Figure S9: mutant effect on differential
expression. (a-c) Differential expression of the sense genes from mid-log
to early stationary phase in the wild type (x-axis) versus the Arrp6 mutant
(a), the Ahda2 mutant (b), and the Arrp6Ahda2 mutant (c).

Additional file 4: Table S3. Antisense units validated in RT experiments
in S. cerevisiae.

Additional file 5: Table S4. qRT-PCR results in each gene and species.
Additional file 6: Table S5. Nanostring results in S. cerevisiae.

Additional file 7: Table S6. RT and gRT-PCR primers in each gene and
species.

Additional file 8: Table S7. Control genes used for the Nanostring
nCounter assays.
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Full-length transcriptome assembly from RNA-Seq data

without a reference genome

Manfred G Grabherr!8, Brian ] Haas!8, Moran Yassour!~*3, Joshua Z Levin!, Dawn A Thompson!,

Ido Amit!, Xian Adiconis!, Lin Fan!, Raktima Raychowdhury!, Qiandong Zeng!, Zehua Chen', Evan Mauceli,
Nir Hacohen!, Andreas Gnirkel, Nicholas Rhind?, Federica di Palma!, Bruce W Birren!, Chad Nusbaum!,
Kerstin Lindblad-Toh!>, Nir Friedman?® & Aviv Regev1’3’7

Massively parallel sequencing of cDNA has enabled deep and efficient probing of transcriptomes. Current approaches for
transcript reconstruction from such data often rely on aligning reads to a reference genome, and are thus unsuitable for samples
with a partial or missing reference genome. Here we present the Trinity method for de novo assembly of full-length transcripts

and evaluate it on samples from fission yeast, mouse and whitefly, whose reference genome is not yet available. By efficiently
constructing and analyzing sets of de Bruijn graphs, Trinity fully reconstructs a large fraction of transcripts, including alternatively
spliced isoforms and transcripts from recently duplicated genes. Compared with other de novo transcriptome assemblers, Trinity
recovers more full-length transcripts across a broad range of expression levels, with a sensitivity similar to methods that rely on
genome alignments. Our approach provides a unified solution for transcriptome reconstruction in any sample, especially in the

absence of a reference genome.

Recent advances in massively parallel cDNA sequencing (RNA-Seq)
provide a cost-effective way to obtain large amounts of transcriptome
data from many organisms and tissue types"2. In principle, such data can
allow us to identify all expressed transcripts’, as complete and contigu-
ous mRNA sequence from the transcription start site to the transcription
end, for multiple alternatively spliced isoforms. However, reconstruction
of all full-length transcripts from short reads with considerable sequenc-
ing error rates poses substantial computational challenges*: (i) some
transcripts have low coverage, whereas others are highly expressed;
(ii) read coverage may be uneven across the transcript’s length, owing
to sequencing biases; (iii) reads with sequencing errors derived from a
highly expressed transcript may be more abundant than correct reads
from a transcript that is not highly expressed; (iv) transcripts encoded
by adjacent loci can overlap and thus can be erroneously fused to form
a chimeric transcript; (v) data structures need to accommodate multiple
transcripts per locus, owing to alternative splicing; and (vi) sequences
that are repeated in different genes introduce ambiguity. A successful
method should address each challenge, be applicable to both complex
mammalian genomes and gene-dense microbial genomes, and be able
to reconstruct transcripts of variable sizes, expression levels and protein-
coding capacity.

There are two alternative computational strategies for transcriptome
reconstruction®. Mapping-first approaches®, such as Scripture® and
Cufflinks?, first align all the reads to a reference (unannotated) genome

and then merge sequences with overlapping alignment, spanning splice
junctions with reads and paired-ends. Assembly-first (de novo) meth-
ods, such as ABySS!, SOAPdenovo® or Oases (E. Birney, European
Bioinformatics Institute, personal communication), use the reads to
assemble transcripts directly, which can be mapped subsequently to a
reference genome, if available. Mapping-first approaches promise, in
principle, maximum sensitivity, but depend on correct read-to-reference
alignment, a task that is complicated by splicing, sequencing errors and
the lack or incompleteness of many reference genomes. Conversely,
assembly-first approaches do not require any read-reference alignments,
important when the genomic sequence is not available, is gapped, highly
fragmented or substantially altered, as in cancer cells.

Successful mapping-first methods were developed in the past year?,
but substantially less progress was made to date in developing effective
assembly-first approaches. As the number of reads grows, it is increas-
ingly difficult to determine which reads should be joined into contigu-
ous sequence contigs. An elegant computational solution is provided
by the de Bruijn graph”?®, the basis for several whole-genome assembly
programs®~'1. In this graph, a node is defined by a sequence of a fixed
length of k nucleotides (‘k-mer;, with k considerably shorter than the read
length), and nodes are connected by edges, if they perfectly overlap by
k - 1 nucleotides, and the sequence data support this connection. This
compact representation allows for enumerating all possible solutions
by which linear sequences can be reconstructed given overlaps of k - 1.
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For transcriptome assembly, each path in the graph represents a possible
transcript. A scoring scheme applied to the graph structure can rely on
the original read sequences and mate-pair information to discard non-
sensical solutions (transcripts) and compute all plausible ones.

Applying the scheme of de Bruijn graphs to de novo assembly of RNA-
Seq data represents three critical challenges: (i) efficiently construct-
ing this graph from large amounts (billions of base pairs) of raw data;
(ii) defining a suitable scoring and enumeration algorithm to recover
all plausible splice forms and paralogous transcripts; and (iii) providing
robustness to the noise stemming from sequencing errors and other
artifacts in the data. In particular, sequencing errors would introduce a
large number of false nodes, resulting in a massive graph with millions
of possible (albeit mostly implausible) paths.

Here, we present Trinity, a method for the
efficient and robust de novo reconstruction of
transcriptomes, consisting of three software a
modules: Inchworm, Chrysalis and Butterfly,
applied sequentially to process large volumes
of RNA-Seq reads. We evaluated Trinity on
data from two well-annotated species—one
microorganism (fission yeast) and one mam-
mal (mouse)—as well as an insect (the whitefly
Bemisia tabaci), whose genome has not yet been

complexity of overlaps between variants. Finally, Butterfly (Fig. 1c)
analyzes the paths taken by reads and read pairings in the context of
the corresponding de Bruijn graph and reports all plausible transcript
sequences, resolving alternatively spliced isoforms and transcripts
derived from paralogous genes. Below, we describe each of Trinity’s
modules.

Inchworm assembles contigs greedily and efficiently

Inchworm efficiently reconstructs linear transcript contigs in six steps
(Fig. 1a). Inchworm (i) constructs a k-mer dictionary from all sequence
reads (in practice, k = 25); (ii) removes likely error-containing k-mers
from the k-mer dictionarys; (iii) selects the most frequent k-mer in the
dictionary to seed a contig assembly, excluding both low-complexity

Overlap linear
sequences by
overlaps of k—1

sequenced. In each case, Trinity recovers most to build graph De Bruii
of the reference (annotated) expressed tran- l Read set components g;pr:u('}(nz 5
scripts as full-length sequences, and resolves .
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length isoforms and tease apart transcripts
derived from paralogous genes.

>ai22:len = 2,560
————

In the first step in Trinity, Inchworm >a124:len = 48
—
assembles reads into the unique sequences of >a126:len = 66
——

transcripts. Inchworm (Fig. 1a) uses a greedy
k-mer-based approach for fast and efficient
transcript assembly, recovering only a single
(best) representative for a set of alternative
variants that share k-mers (owing to alterna-
tive splicing, gene duplication or allelic varia-
tion). Next, Chrysalis (Fig. 1b) clusters related
contigs that correspond to portions of alterna-
tively spliced transcripts or otherwise unique
portions of paralogous genes. Chrysalis then
constructs a de Bruijn graph for each cluster
of related contigs, each graph reflecting the

>a123:len = 4,443

Linear sequences

\ lé)
N Compact graph

with reads

l Extracting sequences

...CTTCGCAA. . .TGATCGGAT. .
...ATTCGCAA. . .TCATCGGAT. .

* Transcripts

Figure 1 Overview of Trinity. (@) Inchworm assembles the read data set (short black lines, top) by
greedily searching for paths in a k-mer graph (middle), resulting in a collection of linear contigs (color
lines, bottom), with each k-mer present only once in the contigs. (b) Chrysalis pools contigs (colored
lines) if they share at least one k— 1-mer and if reads span the junction between contigs, and then it
builds individual de Bruijn graphs from each pool. (c) Butterfly takes each de Bruijn graph from Chrysalis
(top), and trims spurious edges and compacts linear paths (middle). It then reconciles the graph with
reads (dashed colored arrows, bottom) and pairs (not shown), and outputs one linear sequence for each
splice form and/or paralogous transcript represented in the graph (bottom, colored sequences).
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Figure 2 Trinity correctly reconstructs the majority
of full-length transcripts in fission yeast and
mouse. (a,c) The fraction of genes that are fully
reconstructed and in the Oracle Set in different
expression quintiles (5% increments) in fission
yeast (50 M pairs assembly) (a) and the fraction
of genes that have at least one fully reconstructed
transcript and are in the Oracle Set in different
expression quintiles in mouse (53 M pairs
assembly) (c). Each bar represents a 5% quintile
of read coverage for genes expressed. Gray bars
show the remaining fraction of transcripts that
are in the Oracle Set but not fully reconstructed.
For example, ~36% of the S. pombe transcripts
at the bottom 5% of expression levels are fully
reconstructed by Trinity; ~45% of the transcripts
in this quintile are in the Oracle Set. (b,d) Curves
show the median values for coverage (as fraction
of length of reference transcripts) by the longest
corresponding Trinity-assembled transcript,
according to expression quintiles in yeast (b) and
mouse (d), depending on the number of read pairs
that went into each assembly.
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and singleton k-mers (appearing only once);
(iv) extends the seed in each direction by find-
ing the highest occurring k-mer witha k - 1
overlap with the current contig terminus and
concatenating its terminal base to the growing
contig sequence (once a k-mer has been used
for extension, it is removed from the diction-
ary); (v) extends the sequence in either direction until it cannot be
extended further, then reports the linear contig; (vi) repeats steps iii-v,
starting with the next most abundant k-mer, until the entire k-mer
dictionary has been exhausted.

The contigs reported by Inchworm alone do not capture the full
complexity of the transcriptome; for example, only one alternatively
spliced variant can be reported at full length per locus, with partial
sequences reported for unique regions of any alternatively spliced tran-
scripts. However, its contigs do maintain the information required by
subsequent Trinity components to reconstruct and search the entire
graph containing all possible sequences. Indeed, except for low-
complexity and singleton k-mers excluded from seeds or discarded in
contigs shorter than the minimum length required, Inchworm’s con-

Expressed mouse genes (%)

5 20 40
Expression quintiles

tigs provide a complete representation of the sequence overlap-based
de Bruijn graph, with each k-mer being unique in the set, and the k - 1
subsequences implicitly defining the edges in the graph. This approach
is much more efficient than computing a full graph from all reads at
once, and it quickly provides a meaningful intermediate output of the
contigs strongly supported by many k-mers in the reads. By eliminat-
ing singleton k-mers as initial seeds for contig extensions, Inchworm
further reduces the inclusion in assemblies of k-mers likely resulting
from sequencing errors.

Chrysalis builds de Bruijn transcript graphs

Chrysalis clusters minimally overlapping Inchworm contigs into sets
of connected components, and constructs complete de Bruijn graphs
for each component (Fig. 1b). Each component defines a collection of
Inchworm contigs that are likely to be derived from alternative splice
forms or closely related paralogs. Chrysalis works in three phases.
(i) It recursively groups Inchworm contigs into connected components.
Contigs are grouped if there is a perfect overlap of k - 1 bases between
them and if there is a minimal number of reads that span the junction
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Expression quintiles

across both contigs with a (k — 1)/2 base match on each side of the
(k - 1)-mer junction. (ii) It builds a de Bruijn graph for each com-
ponent using a word size of k — 1 to represent nodes, and k to define
the edges connecting the nodes. It weights each edge of the de Bruijn
graph with the number of k-mers in the original read set that support
it. (iii) It assigns each read to the component with which it shares the
largest number of k-mers, and determines the regions within each read
that contribute k-mers to the component.

Butterfly resolves alternatively spliced and paralogous
transcripts

Butterfly reconstructs plausible, full-length, linear transcripts by rec-
onciling the individual de Bruijn graphs generated by Chrysalis with
the original reads and paired ends. It reconstructs distinct transcripts
for splice isoforms and paralogous genes, and resolves ambiguities
stemming from errors or from sequences >k bases long that are shared
between transcripts.

Butterfly consists of two parts (Fig. 1c). During the first part, called
graph simplification, Butterfly iterates between (i) merging consecu-
tive nodes in linear paths in the de Bruijn graph to form nodes that
represent longer sequences and (ii) pruning edges that represent minor
deviations (supported by comparatively few reads), which likely cor-
respond to sequencing errors. Diploid polymorphisms are expected to
be more frequent than sequencing errors and will likely be maintained.
In the second part, called plausible path scoring, Butterfly identifies
those paths that are supported by actual reads and read pairs, using
a dynamic programming procedure that traverses potential paths in
the graph while maintaining the reads (and pairs) that support them.
Because reads and sequence fragments (paired reads) are typically
much longer than k, they can resolve ambiguities and reduce the com-
binatorial number of paths to a much smaller number of actual tran-
scripts, enumerated as linear sequences.
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In the S. pombe data set, nearly all (91%,
4,600/5,064) reference protein-coding
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sequences exist in the Oracle Set (25-mer
dictionary, 154 M paired-reads), as almost all
encoded transcripts (98%) are expressed in the
measured conditions (> 0.5 fragments per tran-
script kilobase per million fragments mapped
(FPKM)), consistent with previous studies in
yeasts>!718, When reducing the coverage by

> > > ) ) )

random sub-sampling, the size of the Oracle Set
is saturated at 50 M paired reads (4,494/5,064,
Supplementary Fig. 1), which we chose as our
subsequent benchmarking set.

Trinity recovered most S. pombe

transcripts

From the 50 M pairs of reads, Trinity fully
reconstructed 86% of annotated transcripts
(4,338/5,064, Supplementary Table 1) at
full length, including 94% of the stringently

Known SPAC19G12.11
annotation Ubiquinone biosynthesis protein Coq9 (predicted)
b chr1: 5,329,037-5,333,190
4,137 bp
Assembled HE- I - AN AN
sequences L ¢ ¢ ¢ < <cg¢ ¢ Qage < < < < < dg<hgc < d
Forward  (0-500)
Read m-
o b | ¥ Tves
Reverse
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annotation myosin Il light chain 1< <B < < S« < < < < ¢ <up <L gl

SPAP8A3.09¢c

Protein phosphatase regulatory subunit Paa1

Figure 3 Trinity improves the yeast annotation. Shown are examples of Trinity assemblies (red) along

with the corresponding annotated transcripts (blue) and underlying reads (gray) all aligned to the

S. pombe genome (read alignment is shown for graphical clarity; no alignments were used to generate the
assemblies). (a) Trinity identifies a new multi-exonic transcript (left) and extends the 5" and 3" UTRs of
the coq9 gene (right). (b) Trinity extends the UTRs of two convergently transcribed and overlapping genes.

defined oracle transcripts (4,218/4,494). Of the
276 oracle transcripts not fully reconstructed,
90 (33%) are reconstructed over at least 90% of
their length, and 177 (64%) are reconstructed
over at least 50% of their length.

Overall, Trinity generated 27,841 linear
contigs longer than 100 bases, grouped into
23,232 components (Supplementary Note).
Only 2,454 of the 27,841 Trinity contigs did
not align to the genome using GMAPY. Of
those, 30% match a Uniref90 (ref. 20) protein
(BLASTX E<10719), almost invariably (90%) a

RNA-Seq of Schizosaccharomyces pombe

We first generated RNA-Seq data from the fission yeast S. pombe. The
S. pombe transcriptome!? has relatively substantial splicing for a eukary-
otic microorganism, with short introns (mean intron length = 80.6 bp)
and dense transcripts (mean intergenic region = 938 bp based on coding
genes only). To maximize transcript coverage, we pooled ~154 million
pairs of strand-specific!>4, 76-base Illumina read sequences from four
biological conditions: mid-log growth, growth after all glucose has been
consumed, late stationary phase and heat shock!>.

Sensitivity limit for full-length reconstruction

We next estimated the upper sensitivity limit for which annotated
transcripts can possibly be perfectly reconstructed given a particular
data set of sequences. Any assembly approach based on a particular
k-length oligomer is limited to those sequences that are represented
by the exact k-mer composition of the RNA-Seq read set. To deter-
mine this empirical upper sensitivity limit, we built a k-mer dictionary
from all the reads and identified all known reference protein-coding
sequences that are reconstructable to full length given the read set, as
those sequences that can be populated by adjacent and overlapping
k-mers across their entire length. We call this set of sequences the
‘Oracle Set’. Because this set also contains transcript sequences that
are covered by k-mers, but not entire reads, some transcripts will
appear reconstructable but are not. Conversely, the Oracle Set reflects
only annotated known genes and known isoforms, which are likely
an underestimate, especially in mammals!®. Nevertheless, the Oracle
Set provides a useful sensitivity benchmark.

Schizosaccharomyces protein, and likely reflect
assemblies with error-rich reads.

Trinity reconstructs full-length transcripts across a broad range of
expression levels and sequencing depths (Fig. 2). For example, it accu-
rately captured the full-length transcript of 71% of genes from the second
quintile (5-10%), and had full-length coverage of 81-95% of annotated
transcripts in the remaining quintiles (Fig. 2a). Considering both full-
length and partial reconstructions, Trinity reconstructed a large fraction
of the bases in each transcript (Fig. 2b).

In many cases, Trinity accurately resolved the sequences of closely
related paralogous transcripts. Out of 77 gene families containing
185 paralogs?!, Trinity recovered at full length all members of 33 families
(68 genes), at least one member from an additional 33 families (46 genes
found, 45 genes missing), and missed all 26 genes in the remaining 11
families, often involving genes not highly expressed. Some of the most
highly expressed transcripts in S. pombe are derived from paralogous
genes with very similar sequences (e.g., those encoding ribosomal pro-
teins?!), yet were resolved by Trinity.

Extended UTRs and long anti-sense transcripts in S. pombe
Compared to the existing annotation, Trinity extended the 5" untrans-
lated region (UTR) of 312 transcripts (median extension, 80 bp; average,
176 bp), and the 3’ UTR of 543 transcripts (median, 72 bp; average, 172
bp) (Supplementary Fig. 2a,b). It also found 3,726 previously unanno-
tated 5 UTRs (median length, 183 bp; average length, 288 bp), and 3,416
3" UTRs (median length, 272 bp; average length, 397 bp).

Trinity identified 2,319 transcripts at 1,235 intergenic loci as
novel transcribed sequences (Fig. 3a) and 612 long antisense tran-
scripts that covered >75% of the length of the corresponding sense
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Figure 4 Trinity resolves closely paralogous genes.
(a) The compacted component graph for two
paralogous mouse genes, Ddx19a and Ddx19b
(93% identity). Red and blue arrows highlight
the two paths chosen by Trinity out of the 64
possible paths in this portion of the graph alone.
Numbers on the edges indicate the number

of supporting reads; numbers in parentheses
represent the sequence length at each node. (b)
Alignments between the transcripts represented
by the red and blue paths in a and the paralogous
genes Ddx19a and Ddx19b relative to the mouse
reference genome (genome alignment shown for
graphical clarity only; no alignments were used to
generate the assemblies).

transcript (Fig. 3b), and were not likely to
be derived from extended transcription of a
neighboring gene. One hundred thirteen of
the intergenic transcripts and 612 long anti-
sense transcripts were multiexonic. Although
both were expressed at lower levels on aver-
age than annotated protein-coding genes
(Supplementary Fig. 3), 49 long antisense
transcripts (at 35 loci) were at least fivefold
more highly expressed than the correspond-
ing sense coding transcript (e.g., an antisense
transcript to the meiotic gene mug27/slkl
(SPCC417.06¢) was >100-fold more highly
expressed, Supplementary Fig. 4). This sup-
ports a role for antisense transcriptional
regulation in meiosis for S. pombe!>22-24,
and is consistent with previous findings in

S. cerevisiae?>.

Trinity recovered most expressed
annotated mouse transcripts

Compared to yeasts, mammalian transcrip-
tomes exhibit substantially more complex
patterns of alternative splicing?®. To test
Trinity’s ability to identify different isoforms,
we sequenced ~52.6 million 76-base read

ARTICLES

a GTCTTTTTCC. . .AGAGGAAGAG (253) CGCGCCGTTT. . . AGAGGAAGAT (288)
\ 08 \ / a1 /
GAGAAAGAGG. . .GCCTGAAACC (149)
/ ” = ” \
TCAGCTTCTC. . .GCTCTGCCCA (71) ACAGCTTCTC. . .GCATTGCCTT (71)
121\ — i
TGATGCTTGC...TTCGAGGCAA (229)
e 108/ ™ % N
TAAATTGGAGAGA (13) CAAATTGGAGAGG (13)
80 \ / 36 ~
GGTCAGAAGG. . .TGACAAATTT (980)
/ * - ~ * \
CTGCAAATAG. . . TATGTAGTGA (179) GTGCAAATGA. . .AGTTTCCTGG (2,076)
NM_007916
Ddx19a Ddx19-like protein
d | | [} | | M | [ | I I ' -
1 T T | T LI | |
i } H— } H—H—
NM_172284
Ddx19b DDX19 homolog
(| ] ] H ] ] H—HH =
1 1 1 | B 1 1 | |
| | 1 1 | B 1 L| | |
10 kb

pairs from C567BL/6 mouse primary immune dendritic cells. Unlike
in S. pombe, only 54% of known mouse genes (10,724) were identified as
expressed (0.5 FPKM), and of those, the Oracle Set determined 8,358
to be full-length reconstructable (727 loci have two or more isoforms
variable in the protein-coding sequences, totaling 9,258 transcripts).

Trinity reported 48,497 contigs longer than 350 bp, capturing 8,185
transcripts to full-length (Supplementary Table 2 and Supplementary
Note), corresponding to 7,749 loci (including 7,947 (86%) transcripts at
7,573 (91%) loci in the mouse Oracle Set). The percentage of transcripts
recovered to full-length and the fraction of length captured were high
across a broad range of expression levels (Fig. 2¢,d).

Trinity resolved splice isoforms and gene paralogs in a manner con-
sistent with the mouse Oracle Set. Trinity found 872 full-length, alterna-
tively spliced, isoforms from 385 loci (53% of the loci with alternatively
spliced variants in the Oracle Set), and matched the full-length tran-
scripts for 463 (61.6%) of 752 paralogous transcripts in the Oracle Set
(>70% identity between paralogs, Fig. 4).

Trinity extended the annotated 5" UTR for 5,265 transcripts (5,036
loci, median length, 43; average length, 91, Supplementary Fig. 2c),
and included one or more additional 5° UTR exons in 305 cases
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(Supplementary Fig. 5). It extended the 3" UTR in 2,918 transcripts
(2,819 loci, median length, 20; average length, 248; Supplementary
Fig. 2d), adding 3" UTR exons in 62 cases (Supplementary Fig. 2b).
Differences in UTR length were often due to alternative splicing events
restricted to the UTR.

High sequence fidelity of reconstructed transcripts

We measured the assembled transcript base error rate by aligning the
full-length transcripts to the corresponding reference genome (using
BLAT), and capturing mismatches, insertions and deletions from the
highest scoring alignment (Supplementary Table 3). In fission yeast,
rates of mismatches, insertions and deletions are each <1 in 10,000.
In mouse, rates were approximately twice as high, reflecting the lower
transcript fold-coverage. As the raw read error rate is ~1%, Trinity thus
resolved ~99% of sequencing errors.

Comparing Trinity’s performance to other methods

‘We compared Trinity’s performance to that of other assemblers by several
measures. First, we examined the number of reference transcripts recon-
structed to full-length by each method (‘sensitivity’). In S. pombe, Trinity
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outperformed the de novo sequence assemblers, ABySS!, Trans-ABySS?”

and SOAPdenovo®, as well as the mapping-first programs Scripture? and
Cufflinks? (Fig. 5a). Trinity performed well across a range of 10 M to the
full 150 M input sequence reads, whereas the alternative methods tended
to peak at ~50 M pairs or smaller inputs (Supplementary Fig. 6a). In
mouse (Ref-Seq annotation set, Fig. 5b), Trinity (8,185 transcripts; 7,749
genes) outperformed the other de novo assembly methods ABySS (5,561;
5,500), Trans-ABySS (7,025; 6,598) and SOAPdenovo (761; 760), with the
mapping-first programs Cufflinks (9,010; 8,536) and Scripture (9,086;

8,293) exhibiting better sensitivity. Furthermore, Trinity and Cufflinks
appear best-tuned in their sensitivity across the broadest range of expres-
sion levels (Supplementary Fig. 7). Unlike Trinity, several of the de novo
methods did not perform well in fully reconstructing transcripts within
the highest expression quintiles (Supplementary Fig. 7).

Second, we assessed the accuracy of splice pattern detection. We
mapped all the reconstructed transcripts (annotated or not) back to
the reference genome and considered each individual intron or the
combinations of introns (splicing patterns) defined by this mapping

(Fig. 5¢-f). We compared the number of
annotated reference introns (or splicing pat-
terns) captured by each method (Fig. 5c-f,
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Figure 5 Comparison of Trinity to other mapping-first and assembly-first methods. (a,b) Evaluation
based on number of full-length annotated transcripts reconstructed by each method in S. pombe (50 M
read pair assemblies) (a) and mouse (53 M read pair assemblies) (b). Number of genes reconstructed in
full length (blue) or as fusions of two full-length genes (green, yeast only) and the number of full-length
reconstructed transcript isoforms (red, mouse only) in each of four assembly-first (de novo) and two
mapping-first approaches. (c,d) Evaluation based on the number of introns defined by the transcripts
from each method for S. pombe (c) and mouse (d). Shown is the number of distinct introns consistent
with the reference annotation (y axis) versus the number of uniquely predicted introns (x axis), based on
mapping to the genome of the transcripts reconstructed by the different methods. (e,f) Evaluation based
on the number of splicing patterns (complete sets of introns in multi-intronic transcripts) defined by the
transcripts from each method for S. pombe (e) and mouse (f). Shown are the numbers of distinct splicing
patterns (y axis) consistent with the reference annotation versus the number of unique splicing patterns

(x axis), for each method.

Unique intron-splicing patterns
(thousands)

method (18-25%). (The notable exceptions
were the particularly low fraction for Scripture
(2%) and high fraction for ABySS (66%)).
Finally, we examined the number of distinct
contigs that mapped to each reference genomic
locus, as well as the coverage (tiers) of recon-
structed transcripts per locus. This accounts
for multiple reported transcripts that represent
the same region of a locus owing, for example,
either to alternative splicing, captured allelic
variation or enumerating transcripts with
otherwise undetected sequencing errors. In
S. pombe, Trinity reports 7,057 transcripts that
map to 4,874 genes with an average coverage of
1.37 tiers per gene, similar to all the alternative
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1 MMONGMDTLPQONGS IHSMNTGSHNTSQNNPGGPQEESKTNLIVNYLPQTMTQEEIRSLFSSIGEVESCKLIRDKMTGQS 80  Whitefly isoform 1
1 -MONGMDTLPQONGS IHSMNTGSHNTSQNNPGGPQEESKTNLIVNYLPQTMTQEEIRSLFSSIGEVESCKLIRDKMTGQS 79  Whitefly isoform 2
1 -MANGMDTVVQQ--------- NGGSNLGQS - - - SQEESKTNLIVNYLPQTMTQEEIRSLFSSIGEVESCKLIRDKLTGQS 67  Nasonia vitripennis
1 -MANGMDTVVQQ--------- NGGSTLGQT- - - SQEESKTNLIVNYLPQSMTQDEIRSLFSSIGEVESCKLIRDKLSGQS 67  Harpegnathos saltator
77  LGYGFVNYHRPEDAEKAINTLNGLRLONKTIKVSFARPSSEATKGANLYVSGLPKHMTQQODLENLFSPYGRIITSRILCD 156 Acyrthosiphon pisum
81  LGYGFVNYHRPDDADKAINTLNGLRLONKTIKVSYARPSSEAIKGANLYVSGLPKNMAQQODLENLFSPYGRIITSRILCD 160 Whitefly isoform 1
80  LGYGFVNYHRPDDADKAINTLNGLRLONKTIKVSYARPSSEAIKGANLYVSGLPKNMAQQODLENLFSPYGRIITSRILCD 159 Whitefly isoform 2
68  LGYGFVNYHRPEDAEKAINTLNGLRLONKTIKVSYARPSSEAIKGANLYVSGLPKNMTQQODLENLFSPYGRIITSRILCD 147 Nasonia vitripennis
68  LGYGFVNYHRPEDAEKAISTLNGLRLONKTIKVSYARPSSEAIKGANLYVSGLPKNMAQQDLENLFSPYGRIITSRILCD 147 Harpegnathos saltator
157 NMTVRQFVGNTGGDHSPSISKGVGFIRFDQRIEAERAIQELNGTVPKGSTESITVKFANNPS-SNKAVPALAAYLTPQGA 235 Acyrthosiphon pisum
161 NMTVRQFVGAAGDN----- MPCVGFIRFDQRIEAERAIQELNGTTPKNCTEPITVKFANNPSSSNKALTPLTAYLAPQAA 235 Whitefly isoform 1
160 NMT-------=----=----- GVGFIRFDQRIEAERAIQELNGTTPKNCTEPITVKFANNPSSSNKALTPLTAYLAPQAA 221 Whitefly isoform 2
148 NIT-------------- GLSKGVGFIRFDQRVEAERAIQELNGTIPKGSTEPITVKFANNPSNNNKAIPPLAAYLTPQAT 213 Nasonia vitripennis
148 NIT-------------- GLSKGVGFIRFDQRVEAERAIQELNGTIPKGSSEPITVKFANNPSNNNKAIPPLAAYLAPQAT 213 Harpegnathos saltator
236 RRFAAGPIHHPTGRFR--------------- YSPLAGDLLANSMLPGNSMNGSGWCIFVYNLAPETEENVLWQLFGPFGA 300 Acyrthosiphon pisum
236 RRF-GGPIHHPTGRFRE--------------- YSPLAGDLLANSMLPGNTMNGSGWCIFVYNLAPETEENVLWQLFGPFGA 299 Whitefly isoform 1
222 RRF-GGPIHHPTGRFSPYG- - LPLWSEAKTGYSPLAGDLLANSMLPGNTMNGSGWCIFVYNLAPETEENVLWQLFGPFGA 298 Whitefly isoform 2
214 RRF-GGPIHHPTGRFR----YIPL-SP-LSRYSPLAGDLLANSMLPGNAMNGSGWCIFVYNLAPETEENVLWQLFGPFGA 286 Nasonia vitripennis
214 RRF-GGPIHHPTGRFSTGKAMLAI-NKGLORYSPLAGDLLANSMLPGNTMNGAGWCIFVYNLAPETEENVLWQLFGPFGA 291 Harpegnathos saltator
301 VQSVKVIRDLQTNKCKGFGFVTMTNYDEAVVAIQSLNGYTLGNRVLQVSFKTNKGK-- 356 Acyrthosiphon pisum
300 VQSVKVIRDLQTNKCKGFGFVTMTNYDEAIVAIQSLNGYTLGNRVLQVSFKINKSK-- 355 Whitefly isoform 1
299 VQSVKVIRDLQTNKCKGFGFVTMTNYDEAIVAIQSLNGYTLGNRVLQVSFKTNKSKT- 355 Whitefly isoform 2
287 VQSVKVIRDLQTNKCKGFGFVTMTNYEEAVVAIQSLNGYTLGNRVLQVSFKTNKSKT- 343 Nasonia vitripennis
292 VQSVKVIRDLQTNKCKGFGFVIMTNYEEAVVAIQSLNGYTLGNRVLQVSFKTINKSKTA 349 Harpegnathos saltator 3'UTR: 32 bp

Figure 6 Trinity reconstructs polymorphic transcripts in whitefly. (a) Allelic variation evident from mapping RNA-Seq reads to a full-length whitefly transcript
reconstructed by Trinity. At the top is a schematic of a single transcript orthologous to the Drosophila melanogaster Lamin gene Lam, identified by grouping
reconstructed transcripts having allelic variants (colored yellow). Gray coverage plot shows cumulative read coverage along the transcripts. SNPs are marked
with colored bars and scaled based on the relative proportions of each variant (blue: C, red: T, orange: G, green: A). Individual reads are shown below
coverage plot (forward reads, blue; reverse, red). (b) Comparison of performance for de novo assembly of the whitefly transcriptome. The y axis is a count

of the unique top-matching (BLASTX) uniref90 (ref. 20) protein sequences aligned Trinity transcripts across a minimal percent of their length. (c) Example
of two alternatively spliced transcripts resolved even in the absence of a reference genome. Shown are two isoforms of an ELAV-like gene reconstructed by
Trinity (gray boxes indicate alternative exons). Exon structure is determined for visualization by the D. melanogaster ortholog. The protein sequence alignment
shows the similarity between the two whitefly isoforms and orthologous proteins from other insects, and it confirms the splice variants (gray boxes).

methods except Scripture (4.37 tiers per gene) and trans-ABySS (5.08
tiers per gene). In mouse, the performance of Trinity (31,706 contigs
map to 11,334 genes, 2.05 tiers per gene on average) is similar to that of
all other methods except trans-ABySS (111,000 contigs, 10,685 genes,
5.93 tiers). The large numbers of Trans-ABySS transcripts covering
similar regions of loci is not reflected in the number of distinct splicing
patterns, indicating that multiple similar transcript sequences are being
generated at individual loci, rather than many different splice isoforms.
ABySS alone, although lacking the higher sensitivity of Trans-ABySS,
reports a smaller number of contigs (~1 transcript tier per locus).
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De novo assembly of the whitefly transcriptome

In the absence of a sequenced genome, de novo assembly of RNA-Seq
is the only viable option to study the transcriptomes of most organisms
to date. For example, although the highly diverse class Insecta contains
several key model organisms, it is not densely covered by high-quality
draft genome sequences. In addition, insect transcriptomes exhibit com-
plex alternative splicing patterns®. The whitefly B. tabaci is one such
example; the genome was not sequenced, and the RNA-Seq samples are
genetically polymorphic, as they are derived from a mixture of individu-
als from an outbred population?®,
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We applied Trinity to a published RNA-Seq data set from whitefly,
consisting of ~21.9 million pairs of 76-base Illumina reads, sequenced
using conventional non-strand-specific methods?. Trinity produced
196,000 transcripts, 14,522 >1,000 base pairs, capturing allelic variants
(Fig. 6a). Of those, 4,323 had top BLASTX matches (E <10710) to 2,880
unique Uniref90 (ref. 20) protein sequences, along at least 80% of the
corresponding homologous protein sequence. This number of approxi-
mately full-length Trinity-assembled transcripts is substantially higher
than achieved by other de novo assemblers (Fig. 6b).

To assess the extent to which alternative splice forms are captured
by the Trinity assembly, we aligned all pairs of contigs derived from
individual graph components, and searched for evidence of at least one
alternative internal exon of minimum length 21 bp and a multiple of 3.
By this definition, 325 components contain at least two different iso-
forms. One such example (Fig. 6¢) is a highly conserved ortholog to an
ELAV-like protein in the ant Harpegnathos saltator, which is present as
two different isoforms involving inclusion of two different, alternatively
spliced exons.

DISCUSSION

We presented Trinity, a method for de novo reconstruction of the major-
ity of full-length transcripts in a sample from RNA-Seq reads directly,
across a broad range of expression levels. Trinity resolved ~99% of the
initial sequencing errors, determined splice isoforms, distinguished tran-
scripts from recently duplicated and identified allelic variants. Unlike
existing short-read assembly tools initially developed for genome assem-
bly, Trinity was designed specifically for transcriptome assembly. To this
end, Trinity leverages several properties of transcriptomes in its assembly
procedure: it uses transcript expression to guide the initial Inchworm
transcript assembly procedure in a strand-specific manner, it partitions
RNA-Seq reads into sets of disjoint transcriptional loci, and it traverses
each of the transcript graphs systematically to explore the sets of tran-
script sequences that best represent variants resulting from alternative
splicing or gene duplication by exploiting pairs of RNA-Seq reads.

Trinity’s transcripts substantially enhance our annotation of the
mouse and fission yeast transcriptomes. In yeast, we identified a large
number of UTR extensions, antisense transcripts and novel intergenic
transcripts. In mouse, we identified many novel transcripts and novel
exons for reference transcripts. Trinity reconstructed many full-length
transcripts from the whitefly transcriptome in the presence of substantial
polymorphisms, as well as alternatively spliced variants.

Paired-reads are important to increase the distance at which Trinity
can resolve ambiguities. For example, a component representing two
paralogous genes (e.g., Fig. 4) or alternative isoforms can have an enor-
mous number of possible paths, but often only very few of them repre-
sent real transcripts. Read pairs, representing longer fragments allow us
to resolve differences (e.g., two pairs of single nucleotide polymorphisms
(SNPs), or two different exons) that occur at that distance or below. At
longer distances, there is no physical unit to support alternative paths,
although similarity in expression levels could be used in the future, as
well as longer reads and fragments from improved high-throughput
sequencing technologies.

Evaluating the performance of transcript assemblers introduces sev-
eral challenges, primarily because many transcripts, especially alterna-
tive isoforms, are not thoroughly defined as part of existing genome
annotations. To address these challenges we used several complementary
benchmarks. Our Oracle Set allowed us to assess sensitivity, by defining
a ‘gold standard’ of expressed annotated transcripts present at full length.
To assess our ability to reconstruct other reference transcripts, we con-
sidered the number of reference loci to which reconstructed transcripts
map, and the coverage (tiers) of reconstructed transcripts per locus.

Finally, we assessed precision by considering all the reconstructed tran-
scripts and the number of ‘correct’ intron boundaries and splice patterns.
Each measure represents a useful benchmark, and showed that Trinity
performs better than other de novo methods and on par with mapping-
first methods depending on the organism.

Trinity is important for both genome annotation and the study of
non-model organisms. For example, all but two vertebrate genomes
are available only as unfinished drafts, containing sequence gaps, scaf-
folds that cannot be anchored to chromosomes and assembly errors3’.
Each of these limitations hinders genome annotation and read map-
ping. We expect that new genomes, assembled from next-generation,
high-throughput sequencing data, will be even more fragmented. Thus,
high-quality de novo transcriptome reconstruction, as implemented in
Trinity, featuring low base-error rates and the ability to capture multiple
isoforms, will prove crucial to maintain acceptable levels of accuracy
when characterizing genes. Finally, genomic sequences are available
for only a tiny fraction of the enormous variety of organisms. Trinity
provides an effective starting point to examine the transcriptomes of
such species.

METHODS
Methods and any associated references are available in the online version
of the paper at http://www.nature.com/nbt/index.html.

Accession Code. GEO (mouse data): GSE29209; SRA (fission yeast data):
SRP005611. Trinity and its open source code are publicly available at http://
TrinityRNASeq.sourceforge.net

Note: Supplementary information is available on the Nature Biotechnology website.
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Inchworm. Inchworm decomposes each sequence read into overlapping k-mers
(default k = 25). Each k-mer is stored in a hash table as a key-value pair, where the
key is the k-mer sequence and the value is the abundance of that k-mer in the input
data set. The k-mer key is stored as a 64-bit unsigned integer with 2-bit nucleotide
encoding. Likely sequencing error-containing k-mers are identified by examining
k-mers that have identical k - 1 prefixes, differing only at their terminal nucleotide,
and removing those k-mers that are <5% abundant as compared to the most highly
abundant k-mer of the group. After processing the entire read set into a set of k-mers
and pruning the likely error k-mers, the most frequently occurring k-mer is identi-
fied as a seed k-mer for reconstruction of draft transcript contigs. The information
content of the seed k-mer is computed as Shannon’s Entropy?!, and only k-mers
having entropy H > 1.5, occurring at least twice in the complete set of input reads,
and not palindromic, are allowed as seed k-mers. The seed k-mer is extended at
both ends in a coverage-guided manner, first from 5’ to 3, followed by extension
from 3’ to 5’. Seed selection by Inchworm was largely inspired by similar methods
implemented in the RepeatScout algorithm32. Extension from the seed is performed
greedily based on the frequencies of candidate overlapping k-mers, with the single
most abundant k-mer with (k - 1) overlap chosen to provide a single-base exten-
sion. In the case of tied extensions, paths are recursively explored to identify the
extension yielding the cumulatively maximal coverage. Extension continues until
no k-mer exists in the data set to provide an extension. The sequence yielded from
the bidirectional seed k-mer extension is reported as a draft transcript contig, and
the set of overlapping k-mers comprising the contig are removed from the hash
table. The entire cycle of seed selection and bidirectional k-mer extension continues
until all k-mers in the hash table have been exhausted.

In strand-specific mode (default), k-mers are derived from only the sense strand
of the RNA-Seq read. Double-stranded mode, used with non-strand-specific RNA-
Seq data involves several modifications: both the sense and the reverse-comple-
mented read sequence are parsed into overlapping k-mers; during Inchworm contig
extension, a k-mer chosen to extend a given path has the reverse-complemented
k-mer sequence disabled for further k-mer extensions; and when an Inchworm
contig is reported at the end of one iteration of contig assembly, both the sense and
reverse-complemented k-mers are removed from the k-mer dictionary.

Only Inchworm contigs with an average k-mer coverage of 2 and length at least
48 (2*(k - 1), k = 25), the minimal contig length required to capture variation
anchored by (k - 1) at each terminus, are used by Chrysalis, as described below.

Chrysalis. To convert the linear contigs into a proper de Bruijn graph, Chrysalis first
builds a k - 1-mer lookup table and recursively pools contigs that share sequences
(excluding low-complexity sequence, as above in Inchworm) into components,
given that there are reads that span across a potential junction (the ‘welds’) and
extend perfect matches by (k — 1)/2 bases on each side. The number of welds must
exceed 0.04 times the average k — 1-mer coverage of each contig (twice the sequenc-
ing error rate in a read, the upper bound of which we estimate at ~2%), as computed
by Inchworm. In addition, the k — 1-mer coverage of one contig cannot exceed the
coverage of the other by a factor of 100 (empirically determined). Next, Chrysalis
processes each component individually and computes a de Bruijn graph from the
linear inchworm contigs. The reads are then mapped to components by selecting
the component that shares the most k — 1-mers with the read, with a single k - 1-mer
being sufficient for assignment. Chrysalis also counts all k-mers and stores them as
‘edge weight’ to indicate their support in the read set. Components with less than a
minimum number of nodes are discarded ( a configurable parameter that defaults
to an empirically determined value of 300 - (k - 1) = 276).

Butterfly. The input to butterfly is a de Bruijn graph component as built by
Chrysalis. First, Butterfly trims edges in the de Bruijn graph. It uses two criteria.
(1) We reasoned that if there is a node with several outgoing edges, such that one of
them has a much smaller read support than the total outgoing reads (less than 5%),
then it probably represents a sequencing error or a variant with very low expres-
sion (Supplementary Fig. 8a). (2) If the outgoing edge has less than 2% support
from the total incoming reads, then it is more likely a spurious transcript extension
(Supplementary Fig. 8b). Outgoing or incoming edges that fail according to one
of these criteria are removed (both these numbers are parameters to the program,
and can be changed for specific requirements).

Second, Butterfly transforms the modified graph into a weighted sequence
graph, where each node is a sequence, rather than an individual k-mer providing
a single-base path extension as in the de Bruijn graph. In this step, Butterfly gener-
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ates a compact graph—the set of paths in the compacted graph is identical to that
of the original de Bruijn graph. As a result, linear paths will be compacted into a
single node, and polymorphisms will be minimized. The weight on each edge of
the modified graph corresponds to the number of reads supporting the edge in
the original de Bruijn graph. For each compound node, we compute the average
coverage, which corresponds to the weights of the original edges that made up the
sequence divided by the length of the node.

We then repeat the trimming step, except that when examining compound nodes
of length >1, we also use the node coverage as a measure of opposite flow in the
second criterion. These two steps (trimming and graph compaction) are reiter-
ated until convergence. The resulting graph represents possible transcripts as paths
through the graph.

Finally, Butterfly uses read sequences, read-pairings and Chrysalis’ read map-
pings to the graph to select the paths that are best supported by read sequences. The
goal is to look for paths with physical evidence for contiguity; by either reads or read
pairings. To do so, we first represent all the reads that contributed to the de Bruijn
graph by the list of the nodes that they traverse. We then use a dynamic program-
ming algorithm for finding supported path prefixes. The procedure is initialized
with source nodes in the graphs (one without incoming edges), and at each step
one path prefix is extended by an additional node.

‘When extending a path prefix that ends at node 7, we consider all outgoing edges
from n, and evaluate the support for the extension. By construction, each edge in the
graph is supported by reads. We however, further require that the last L nucleotides
of the path be supported by reads. We define a path as L-supported at coverage c if
at each extension of this path, we have at least ¢ reads supporting the L nucleotide
suffix of this path (Supplementary Fig. 8c). A read supports a path fragment either
if it contains that fragment as a subsequence, or in the case of paired-reads, if the
fragment lies on all paths from nodes that correspond to the first sequence mate to
the second sequence mate. In addition, to avoid combinatorial explosion because
of small variations (most likely caused by sequence errors), once we extend a path
prefix, we examine other paths ending at the same node, and merge the new path
with previous path prefix ending at the same node if the two are >95% identical.

In the results here we used L = 250 and ¢ = 2. The requirement for 250-supported
paths emerges from the expected insert size of our library, as we do not expect to
have support for a longer suffix if our read pairs (derived from a single fragment) do
not span that far. We note that the resolution of ambiguities, which includes alterna-
tive splicing and allelic variation, is limited to the insert size of the read pairs, or the
read lengths for unpaired data. Although this program can be in theory exponential
in size, in practice its cost is defined by the number of supported paths.

Yeast and mouse cell growth conditions. We used the S. pombe strain SPY73 975h+
and dendritic cells isolated from C57BL/6] mice. Details of cell isolation and growth
conditions are in the Supplementary Methods.

RNA isolation for yeast samples. Total yeast RNA was isolated using Qiagen RNeasy
kit following manufacturers’ protocol for mechanical lysis using 0.5 mm zirconia/
silica beads (Biospec). PolyA* RNA was isolated from total RNA using Poly(A)
purist kit (Ambion) or Dynabeads mRNA purification kit (Invitrogen). Total RNA
and polyA* RNA were treated with Turbo DNA-free (Ambion), as described. The
integrity of the RNA was confirmed using the Agilent 2100 Bioanalyzer and quanti-
fied using RNA Quant-It assay for the Qubit Fluorometer (Invitrogen).

RNA preparation for mouse RNA. Dendritic cells were lysed using QIAzol reagent
and total RNA was extracted the miRNeasy kit’s procedure (Qiagen), sample quality
was controlled on a 2100 Bioanalyzer (Agilent).

RNA-Seq library preparation. For the mouse dendritic cell sample, we created
a dUTP second strand library starting from 200 ng of Turbo DNase treated and
poly(A)* RNA using a previously described method!* except that we fragmented
RNA in 1x fragmentation buffer (Affymetrix) at 80 °C for 4 min, purified and
concentrated it to 6 pl after ethanol precipitation. For the S. pombe samples, we
prepared dUTP second-strand libraries similarly, with the following additional
modifications. We added an index (8-base barcode) to each library to enable pool-
ing of these libraries (S. Fisher, Broad Institute, personal communication). In addi-
tion, the adaptor ligation step was done with 1.2 pl of index adaptor mix and 4,000
cohesive end units of T4 DNA Ligase (New England Biolabs) overnight at 16 °Cin
a final volume of 20 pl. Finally, we generated libraries with an insert size ranging
from 225 to 425 bp.

doi:10.1038/nbt.1883
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RNA-Seq library sequencing. We sequenced all the cDNA libraries with an
Tllumina Genome Analyzer IIx. We pooled the four S. pormbe libraries together with
four other indexed libraries and sequenced them using eight lanes of 76-base paired
reads. We sequenced the mouse library using two lanes of 76-base paired reads.

Defining empirical limits of full-length transcript reconstruction. Inchworm
was used to construct a k-mer dictionary based on the input reads as described
above. Reference protein-coding sequences were examined by searching for each
overlapping k-mer sequence in the dictionary. Reference protein-coding sequences
lacking at least one k-mer in the Inchworm k-mer graph were classified as inacces-
sible for full-length reconstruction by means of the k-mer graph method. Those
reference sequences fully represented within the k-mer dictionary were included
in the Oracle Set.

Finding paralogous genes in mouse. To determine paralogous transcripts, we
aligned all isoforms of all genes present in the Oracle Set against each other, using the
alignment program Satsuma>> We required alignments to be longer than half of the
shorter of both sequences and at sequence identity of 70% and up. If at least one pair
of transcripts from two genes met the criteria, we called both genes paralogous.

Short-read spliced alignments and transcript reconstructions using Cufflinks and
Scripture. The S. pombe genome was obtained from the Sanger Institute (http://www.
sanger.ac.uk/Projects/S_pombe/download.shtml). The mouse genome version 9
was obtained from the UCSC mouse genome browser gateway (http://genome.ucsc.
edu/cgi-bin/hgGateway?db=mm9). Left and right fragment reads were separately
aligned to the genomes using TopHat (version 1.1.4)3* with mouse RNA-Seq reads,
and BLAT with S. pombe RNA-Seq reads; the BLAT short-read alignment pipeline
is provided at http://inchworm.sourceforge.net/blat_short_read_alignment.html .
We found BLAT to provide more accurate short-read alignment with S. pombe, with
TopHat lacking sensitive detection of the very short introns in S. pombe. In addition,
both Scripture and Cufflinks demonstrated better performance using the BLAT
alignments for S. pombe as compared to the TopHat alignments (Supplementary
Fig. 9a). Conversely, performance of Scripture and Cufflinks using TopHat align-
ments in mouse exceeded that using BLAT alignments (Supplementary Fig. 9b).
Hence, for evaluation purposes, we leveraged BLAT short-read spliced alignments
in S. pombe and TopHat alignments in mouse.

BLAT alignments of short reads to the S. pombe genome were performed using
the pipeline described above with the following settings: maximum intron length set
to 500 bases, maximum distance between read pairs of 500, and only the single best
alignment was reported per read. TopHat alignments to the mouse genome were
performed using the following parameters: minimum intron length of 50 bases,
maximum intron of 100 kb and mate inner distance set to 300 bases. Transcribed
strand information was assigned to the individual reads based on knowledge of the
fragment type (left or right) and the aligned strand of the genome. Both Cufflinks
(version 0.9.3)? and Scripture? (version VPaperR3, obtained from Scripture author
Manuel Garber) were executed on these alignments.

Evaluation of published de novo methods. Illumina reads were de novo assembled
using ABySS! (version 1.2.1), SOAPdenovo® (version 1.04) or Trans-ABySS?’.
Command-line parameters used with ABySS were “abyss-pe k=25 E=0 n=10
in="left.fa right.fa’ ”; using a k-mer length of 25. Likewise, a 25-mer length was
used with SOAPdenovo along with other default parameters. Trans-ABySS?” was
run on mouse and S. pombe using a set of k-mers including 26, 31, 36, 41 and 46 fol-
lowed by merging the results by running the first stage of the trans-ABySS analysis
pipeline. In the case of whitefly, all k-mers from 26 through 46 were used so as to
maximize sensitivity given the smaller input number of reads.

Comparisons to reference transcripts. Current gene annotations for S. pombe
were downloaded as file ‘pombe_290110.gff* from GeneDB (http://old.genedb.
org/genedb/pombe/). Ref-Seq transcript gene annotations were downloaded for
mouse at the UCSC mouse genome browser gateway (http://genome.ucsc.edu/
cgi-bin/hgGateway?db=mm9) in BED format. Protein coding nucleotide sequences
were extracted from the genome sequences based on the gene annotations using
custom PERL scripts. The mouse reference coding sequences were further dis-
tilled to remove entirely identical sequences corresponding to isoforms encoding
identical proteins and paralogous sequences: the original 19,947 genes encoding
23,881 transcripts were reduced to 19,857 genes encoding 22,717 non-identical
coding transcripts.

doi:10.1038/nbt.1883

Reconstructed transcript sequences (by de novo assembly; Scripture or Cufflinks)
were mapped to the reference coding sequences using BLAT?*. Full-length reference
annotation mappings were defined as having at least 95% sequence identity cover-
ing the entire reference coding sequence and containing at most 5% insertions or
deletions (cumulative gap content). In evaluating methods that leverage the strand-
specific data (Trinity and Cufflinks), proper sense-strand mapping of sequences was
required. Transcripts reconstructed by the alternative methods (Scripture, ABySS
and SOAPdenovo) were allowed to map to either strand. Fusion transcripts were
identified as individual reconstructed transcripts that mapped as full-length to mul-
tiple reference coding sequences and lacked overlap among the matching regions
within the reconstructed transcript. One-to-one mappings were required between
reconstructed transcripts and reference transcripts, including alternatively spliced
isoforms, with the exception of fusion transcripts.

Analysis of alignment-inferred introns and splicing patterns from reconstructed
transcripts. Reconstructed transcripts were mapped to genome sequences using
GMARP, reporting only the single top-scoring alignment per sequence. Individual
introns and complete splicing patterns were extracted from each of the alignments
and compared to reference annotations using custom PERL scripts. Unique introns
(missing from the reference annotations) were required to contain consensus dinu-
cleotide splice sites (GT or GC donors and AG acceptors).

Locus coverage (tiering) by reconstructed transcripts. The BLAT alignments
between reference coding sequences (loci) and reconstructed transcripts described
above were organized into locus-level coverage tiers as follows. Given a set of dif-
ferent reconstructed transcripts that have a best match to a reference sequence,
the first match is selected and applied to that reference contig at the first coverage
tier. The remaining matches are then examined for placement in the first tier. If a
subsequent reference-matching region in common between two matches exceeds
30% of the shorter match length, then this subsequent match is propagated to the
next highest tier lacking such restrictive match overlap. Tier placement continues
until all matches are placed. The maximal tier level defines the locus-level coverage
for that reference sequence and can be at most equal to the number of reconstructed
transcripts mapped to that locus. Strand-specific transcript reconstructions were
tiered in a strand-specific manner (as in the case of Trinity and Cufflinks). In the
case of a highly fragmented transcriptome assembly, it is possible for many recon-
structed transcripts to populate the first tier yielding a coverage of 1. In the case of
alternatively spliced isoforms or redundant transcript generation at a given locus,
the coverage value will exceed 1.

Running Trinity on data sets of varying read depth. We randomly subsampled
pairs in the mouse data set to generate such subsets. Inchworm and Chrysalis were
run on a server with 256 GB of RAM, Butterfly on a server (load sharing facility
(LSF)) farm in parallel. Wall-clock run times are: ~17 h (10 M pair set), ~36 h
(30 M pair set), and ~60 h (full 50 M pair set). All experiments were performed
with Trinity using parameters: minimum contig length of 100 bases and average
fragment length of 300 bases.

Computing gene expression values from aligned RNA-Seq reads. The aligned
reads (by TopHat in the case of mouse leveraging the full 52.6M read pairs, and by
BLAT in the case of S. pombe leveraging the 50 M read pairs) were used for comput-
ing gene (and other feature) expression values. The number of fragments mapped
to segments (exons) of a genome-mapped feature were tallied based on overlap
of the segment’s coordinates by either read from a sequenced fragment, counting
fragments as opposed to counting individual reads. Expression was computed as
the normalized value of fragments per kilobase of feature sequence per million
fragments mapped, or FPKM?. Calculations were performed using custom PERL
scripts. Genes were defined as ‘expressed’ if observed to have expression values of
at least 0.5 FPKM, and these genes were divided into expression quintiles at 5%
intervals for purposes of analysis.
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Chapter 6
Discussion

In my dissertation I set out to develop tools for transcriptome characterization
using RNA-Seq data without relying on pre-existing annotation. I have applied
these tools to study a range of organisms: from the dense transcriptomes of the
budding- and fission-yeast to the highly spliced and complex mouse transcrip-

tome.

6.1 Characterizing the budding yeast transcrip-

tome using the mapping-first approach

In the paper described in Chapter 2 (Yassour et al., 2009) we aimed to test
whether it is possible to ab-initio define a complete yeast transcriptome using only
the (unannotated) genome sequence and massively parallel cDNA sequencing.
Our approach identified 85% of expressed genes and correctly inferred 254 of the
305 known splicing events. This is impressive as not all splice junctions are used
in our samples. Also, it corrected a number of current annotations and identified
previously undescribed transcriptional units and splice junctions, several of which
we validated experimentally. Last, the method can also accurately quantify the
expression levels of transcripts.

This mapping-first approach had several limitations. First, as in all RNA-
Seq based studies, we are limited to the expressed portion of the transcriptome
of our sample. We partly addressed this issue by creating libraries from two
physiological conditions. Second, we missed splicing events due to local non-
uniqueness at the splice junction. This was at the early days of RNA-Seq and
we had only single-end 32bp long reads. With current read length and paired
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reads, this problem is less severe. Finally, due to the lack of strand specificity
our approach was limited in detecting and distinguishing antisense transcripts
and differentiating between close divergent transcription units. In most cases we
could recover transcript orientation from biases in read coverage along a gene,
but we can further enhance the predictions by constructing strand-specific cDNA
libraries, that were not available then, but are currently the standard.

Unlike previous RNA-Seq studies (Nagalakshmi et al., 2008; Mortazavi et al.,
2008), we demonstrated the use of RNA-Seq for complete, ab-initio construction
of a eukaryotic transcriptome, independent of any existing genome annotation.
For example, Mortazavi et al. (2008) use a mapping approach that relies on map-
ping reads to known gene models, exons and splice junctions. Such approaches
cannot detect splice junctions between unannotated exons.

Our work powerfully demonstrates the feasibility of constructing a transcrip-
tome of an organism in a comprehensive, fast, and cheap way. Applying our
approach to explore the transcriptomes of less characterized organisms in an ab-

initio fashion can have a significant impact on genomics studies.

6.2 Comparing strand specific library construc-

tion methods

One of the major caveats of the work of Chapter 2 (Yassour et al., 2009), as
mentioned above, is the lack of strand specificity in the RNA-Seq data. To ad-
dress this issue we evaluated existing strand specific library construction protocols
(Chapter 3, Levin et al. (2010)). I have developed a computational framework
to estimate the performance of each protocol. It is unclear how to measure the
success of such protocols, as they differ greatly in the experimental work and
output, and depending on our task one can be better than the other. To address
this, the framework is comprised of a few metrics that address several aspects of
the data: (1) the complexity of the library, specifically, how many unique reads
we have, which indicates how many artifacts were introduced in the amplification
step; (2) the strand specificity of the reads which was calculated by the percent-
age of the reads mapped to the expected strand; (3) even-ness of coverage along
genes; (4) the coverage of the 5" and 3’ ends of genes; and (5) correlation in
expression level estimations with the microarray technology. In addition to these

formal criteria, we found a substantial variation in the experimental complexity
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of different protocols.

We concluded that the dUTP protocol provided the most compelling overall
balance across criteria, followed closely by the Illumina RNA ligation protocol.
Our compendium and analysis pipeline, which are available online, are important
resources, include a general benchmarking dataset and tools for testing the quality
of future libraries, and have been used thus far by various labs around the world
(Tariq et al., 2011; Wang et al., 2011).

6.3 Annotating antisense transcripts in the bud-

ding yeast transcriptome

Once we have identified the best protocol for strand specific RNA-Seq, I went back
to explore the extent of antisense transcription in yeast (Chapter 4, Yassour
et al. (2009)). Towards this end, I have used the strand specific RNA-Seq data
from the dUTP library, generated from Saccharomyces cerevisiae cells grown to
mid-log phase. I found 1,103 putative antisense transcripts expressed in this
condition, ranging from 39 short ones covering only the 3 UTR of sense genes
to 145 long ones covering the entire sense ORF. I focused on 402 long antisense
units (each spanning over 75% of a coding unit). In this category, I identified 224
new antisense transcripts that in previous microarray studies (Xu et al., 2009)
were either undetected or annotated as long UTRs of neighboring genes. Using
the paired reads in our data, we can distinguish between UTR extensions and
independent transcriptional units.

We are still unsure why so many genes have antisense transcripts. Could it
be that they are all side effect of the sense transcription? The cell is investing a
great deal of energy and materials into transcribing these antisense unit, thus the
question of their functionality is even more interesting. To date, functional studies
have identified a regulatory role for only a few antisense transcripts (Hongay et al.,
2006; Camblong et al., 2007; Houseley et al., 2008). The diversity of lengths in our
antisense units suggests there may be more than a single underlying mechanism
for their formation and function.

Genome-wide analyses have suggested that antisense transcripts are the re-
sults of promiscuous transcription (He et al., 2008; Xu et al., 2009; Neil et al.,
2009). Our results do not support promiscuous or aberrant transcription as the

primary cause of the observed antisense transcripts. We find antisense transcrip-
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tion at only 18% of the genes. Moreover, many of the antisense units are long
and show robust sequence coverage, in contrast to what we might expect in a
noisy process. Finally, antisense transcripts are only very weakly correlated to
their neighbors, inconsistent with the leaky transcription theory.

We found that the sense transcripts corresponding to longer antisense units
are significantly enriched for key processes in S. cerevisiae, including stress re-
sponse, the differential regulation of growth and stationary phase, and possibly
meiosis and sporulation. The high level of antisense expression is consistent with
the repression of these processes in fast growing yeast cells. Indeed, when we
examined the relative change in expression in sense and antisense units across
multiple conditions, we found a strong and consistent anti-correlation between
sense genes and their corresponding antisense units.

In search for a mechanistic understanding of this potential regulation, we
measured the expression levels of 67 sense and antisense pairs in the ARrp6
and AHda2 strains, as these genes were suggested to play a mechanistic role by
Camblong et al. (2007). Notably, we found support for the role of Rrp6 in the
regulation of antisense levels, resulting in an increase in antisense levels in the
Arrp6 mutant, and a mild decrease in sense levels. We could not demonstrate a
general effect of Hda2 on the levels of sense or antisense transcripts. This sug-
gests that it may be challenging to generalize the mechanisms shown for specific
transcripts (PHO84, Camblong et al. (2007)) to all antisense transcripts.

Independent support for a potential function is the conservation of expression
and regulation of six antisense units tested across five species that have diverged
more than 150 million years ago, suggesting purifying selection.

Lastly, following our identification of several antisense units in meiosis related
genes, | was involved in a study on the transcription and translation regulation
during meiosis in yeast (Brar et al., 2012). In this work, we measured RNA-
Seq and protein production through the yeast meiotic sporulation program. We
found strong, stage-specific expression for most genes, achieved through control of
both mRNA levels and translational efficiency. Meiotic translation is also shifted
toward non-canonical sites, including short ORFs on unannnotated transcripts
and upstream regions of known transcripts (upstream ORFs, or uORFs). This
work reveals pervasive translational control in meiosis and helps to illuminate the
molecular basis of the broad restructuring of meiotic cells.

Since our publication there has been growing evidence of antisense transcrip-

tion in fungi (Donaldson and Saville, 2012), especially in genes related to stress

63



and meiosis (Chen and Neiman, 2011), compatible with our findings. As more
and more studies of antisense transcription are preformed, the debate regarding
their functionality settles and makes way to the more interesting discussion re-
garding their regulation and mechanism of inhibition. A recent study by Murray
et al. (2012) finds that antisense transcripts and their neighboring genes are in-
dependent in their regulation, inconsistent with Xu et al. (2009) but consistent
with our conclusion. Regarding their functionality, a new study from the Stein-
metz lab (Xu et al., 2011) finds that antisense transcripts assist in a complete
“shut-off” of the sense genes, and that this type of inhibition specifically affects
low levels of sense gene expression. Furthermore, they argue that antisense tran-
scripts initiating from bi-directional promoters assist in spreading the repression
signal to adjacent genes (Xu et al., 2011). Regarding the inhibition mechanism,
several studies have found evidence that chromatin take part in this process, al-
though much remains to be discovered. Recently, Magistri et al. (2012) find that
antisense transcripts regulated their sense genes by recruiting epigenetic effec-
tors (e.g., via H3K27me3 and H3K9me3), and van Dijk et al. (2011) show how
H3K4me3 plays an important role in controlling the antisense repressive activity.

To conclude, it is now clear that antisense transcripts provide an additional
layer of regulation, spanning from fungi to mammals, but the exact inhibition

mechanisms are still unclear and remain to be fully characterized.

6.4 The development and application of an assembly-
first method to characterize complex tran-

scriptomes

In Chapters 1-3 I have discussed only mapping-first approaches, which have
some caveats, mainly the requirement of a high quality reference genome, and the
difficult task of mapping spliced reads. In our recent work studying the genome
and highly spliced transcriptome of the fission yeasts (Rhind et al., 2011), these
caveats became major obstacles. To address these challenges we turned to the
assembly-first strategy, which as explained above in details, first assembles all
the RNA-Seq reads, and then maps the longer sequences to a reference genome,
if such has been sequenced.

In the paper described in Chapter 5 (Grabherr et al., 2011) we presented

Trinity, a method for de-novo reconstruction of full-length transcripts using RNA-
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Seq assembly. Unlike existing short-read assembly tools initially developed for
genome assembly, Trinity was designed specifically for transcriptome assembly.
To this end, Trinity leverages several properties of transcriptomes in its assembly
procedure: it uses transcript expression to guide the initial Inchworm transcript
assembly procedure in a strand-specific manner, it partitions RNA-Seq reads into
sets of disjoint transcriptional loci, and it traverses each of the transcript graphs
systematically to explore the sets of transcript sequences that best represent
variants resulting from alternative splicing or gene duplication by exploiting pairs
of RNA-Seq reads.

We applied Trinity to annotate the dense transcriptome of the fission yeast
and the spliced and complex transcriptome of mouse. Trinity resolved ~99% of
the initial sequencing errors, determined splice isoforms, distinguished transcripts
from recently duplicated and identified allelic variants. In yeast, we identified
a large number of UTR extensions, antisense transcripts and novel intergenic
transcripts. In mouse, we identified many novel transcripts and novel exons for
reference transcripts. In addition, when applying Trinity to RNA-Seq data from
whitefly, an organism with no sequenced reference genome, we reconstructed
many full-length transcripts, including alternatively spliced variants, even in the
presence of substantial polymorphisms.

Paired-reads are important to increase the distance at which Trinity can re-
solve ambiguities. Read pairs, representing longer fragments allow us to resolve
differences (e.g., two pairs of SNPs, or inclusion of two distant exons) that occur
at that distance or below. At longer distances, there is no physical unit to sup-
port alternative paths, but future RNA-Seq libraries with longer fragment size
can improve our performance greatly.

Trinity is important for both genome annotation and the study of non-model
organisms. High-quality de-novo transcriptome reconstruction, as implemented
in Trinity, featuring low base-error rates and the ability to capture multiple iso-
forms, will prove crucial to maintain acceptable levels of accuracy when char-
acterizing genes. Furthermore, genomic sequences are available for only a tiny
fraction of the enormous variety of organisms. Thus, Trinity provides an effective
starting point to examine the transcriptomes of such species as well as aberrant
cancer genomes. In the year since its publication Trinity has been used in many
studies of characterizing transcriptomes, with or without a sequenced reference
genome (van Bakel et al., 2011; Zhang et al., 2012; Lulin et al., 2012; Wang et al.,
2012).
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Genome Database. Nucleic Acids Res 26:73-79]. The gray box represents the addition to the exon, according to our results. (B) The multiple sequence alignment
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Splicing validation. (A) Alternative splicing in the SUS1 gene, where, in addition to the 2 known introns, we also observe clear read-through at both

junctions. Experimental validation confirms our predictions by revealing 3 bands, 2 bands consistent with just 1 intron spliced, and a stronger band consistent
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Fig. S6. Quantifying expression using sequencing. (A) Distribution of estimated mRNA copies per cell in YPD. Quantitative mRNA expression levels were
estimated based on the density of reads along ORFs, with an estimate of 15,000 mRNA molecules per cell. (B) For each ORF, we computed the log2 ratio of HS
and YPD (x axis), and compare it to its log2 ratio as measured by commercial 2-dye DNA microarrays (y axis).
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Supplementary Figure 1. The 3’ split adaptor method.

Shown are the salient details for the 3’ split adaptor method'*.
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Supplementary Figure 2. Fraction of transcript coverage.

Shown is the percentage of bases with zero coverage (Y axis) for each gene (blue dot) in the genome,
vs. the fraction of total reads for that gene in the pooled library. Plots are shown for each library in the
compendium, as noted. In each case, a Lowess fit is shown as a red curve.
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Shown is the average gene coverage at each percentile of a gene’s length, for all genes in each library.

Libraries are color coded as specified in the legend.
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Supplementary Figure 4. Scatter, Q-Q, and MA plots. Shown are the scatter (left panel), Q-Q (middle
panel) and MA (right panel) plots for each library, in comparison to the control library. The scatter plot
shows the fraction of total reads for each gene (blue dot) in the reference library (Y axis) vs. a strand
specific library (X axis). The Q-Q plot shows the level at each quantile (rank) of expression in the
reference library (Y axis) vs. the strand-specific library (X axis). A slope = 1 line is shown for comparison
(red crosses). The MA plot shows for each gene (dot) the difference in expression levels between the
reference and strand-specific libraries (Y axis) vs. their mean expression level (X axis). Red dashed
lines — two-fold difference in expression.
Nature Methods: doi: 10.1038/nmeth.1491



Supplementary Figure 5
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Supplementary Figure 5. Coverage at example genomic locus.

Shown are the genome annotations from SGD (top track, boxes with arrow heads), followed by the
aligned read coverage in each library on each strand (maximum scale is 100 reads), for the
Chromosome 7: 472,338-483,222 locus. Coverage is calculated only with reads from the 2.5 million
sampled reads per library.

Nature Methods: doi: 10.1038/nmeth.1491



Supplementary Table 1: Alignment of all reads for each library in our compendium.

Single-end Libraries

RNA Ligation 1 24,504,932 19,188,938 19,188,938 15,249,242 15,249,242
lllumina RNA Ligation 2 48,120,669 33,843,481 16,921,741 28,519,438 14,259,719
lllumina RNA Ligation - SPRI 2 51,475,621 21,444,010 10,722,005 42 18,074,114 9,037,057 35
3' Split Adaptor 1 9,612,690 9,231,502 9,231,502 96 3,695,252 3,695,252 38
Published dUTP 1 12,216,063 7,652,683 7,652,683 63 5,140,634 5,140,634 4

Paired-end Libraries
SMART 2 5,076,555 2,868,582 930,686 465,343
Hybrid 2 14,788,936 5,752,937 39 5,664,015 38 2,900,346 1,450,173 20 81
NNSR 1 6,873,972 4,636,153 67 3,628,894 53 2,683,010 2,683,010 39 81
NNSR no actD 2 16,399,019 8,328,130 51 7,975,082 49 5,291,376 2,645,688 32 82
BiSulfite "S" 1 10,168,083 7,235,219 71 7,564,178 74 4,570,831 4,570,831 45 63
BiSulfite "H" 1 6,896,242 3,708,647 54 3,992,780 58 2,022,728 2,022,728 29 78
dUTP 1 13,614,820 11,895,357 87 11,689,118 86 9,222,678 9,222,678 68 58
dUTP oligo(dT) 1 9,899,691 8,512,926 86 8,590,913 87 6,580,247 6,580,247 67 48
Control 1 14,596,122 12,565,360 86 12,654,534 87 9,872,609 9,872,609 68 54
Control oligo(dT) 1 13,843,046 11,712,442 85 11,857,471 86 9,059,171 9,059,171 65 53

Nature Methods: doi: 10.1038/nmeth.1491



Supplementary Table 2: Basic statistics and ive per

Library total unique %

number of read starts unique
reads read

(sampled all starts

regions)

RNA Ligation 2,500,018 922,327 37%
llumina RNA Ligation 2,500,018 962,917 39%
llumina RNA Ligation - SPRI 2,500,016 979,204 39%
SMART 930,686 380,169 4%
Hybrid 2,500,017 442,037 18%
NNSR 2,500,020 356,534 14%
NNSR no actD 2,500,019 591,443 24%
BiSulfite "S" 2,500,017 704,275 28%
BiSulfite "H" 2,019,595 738,479 37%
dUTP 2,500,019 895,698 36%
dUTP oligo(dT) 2,500,018 794,635 32%
3" Split Adaptor 2,500,016 1,042,152  42%
Published dUTP 2,500,019 = 1,000,797 = 40%
Control 2,500,017 1,057,315  42%

Control oligo(dT) 2500016 = 996,806 | 40%

%
unique
palrs

number of
reads on
expected
strand

2,290,117
2,293,081
2,287,502
756,529
2,289,299
2,270,422
2,273,087
2,263,206
1,828,045
2,319,635
2,303,415
2,139,848
2,192,118
1,148,156
1,157,204

for each library in our compendium.

number of
reads on
opposite
strand

10,947
13,837
15,207
96,080
43,642
12,268
51,888
25,518
23,254
14,609
15,554
63,904
37,033
1,167,471
1,150,325

number of
reads outside
known
annotations

13,668
21,374
24,742
4,750
23,849
62,007
62,623
11,504
10,544
14,320
13,632
91,288
57,559
17,423
17,463

total number % antisense

of reads in
single feature
regions

2,314,732
2,328,292
2,327,451
857,359
2,356,790
2,344,697
2,387,598
2,300,228
1,861,843
2,348,564
2,332,601
2,295,040
2,286,710
2,333,050
2,324,992

(opposite
strand)

0.47%

50.04%
49.48%

average
coefficient of

varlation (CV) covered

for top 50%
expressed
genes)

1.06
1.17
1.16
1.50
1.61
211
1.75
1.28
1.25
0.76
0.86
0.54
0.64
0.85
0.90

genes with genes with

5 end

3 end
covered

weighted
average of
number of
segments per
gene

3.16
2.61
2.69
4.59
4.39
4.40
4.43
3.52
3.29
248
2.54
229
241
3.18
3.20

RMSE to RMSE to
to control control to pooled pooled to
microarrays
0.80 0.99 0.90 0.75 0.83
0.86 0.87 0.95 0.64 0.80
0.85 0.87 0.95 0.62 0.81
0.79 0.96 0.82 0.95 073
0.81 0.93 0.89 0.73 0.70
0.62 1.51 0.78 1.29 0.57
0.72 1.15 0.87 0.82 0.73
0.79 1.03 0.90 0.77 073
0.81 0.99 0.90 0.75 073
0.90 0.69 0.94 0.57 0.84
0.89 0.78 0.92 0.74 0.82
0.68 1.21 0.88 0.89 0.80
0.80 0.98 0.93 0.64 0.81
1.00 0.00 0.75 122 0.67
0.97 0.36 0.74 123 0.65

RMSE to
microarrays

0.96
1.05
1.03
121
127
1.63
123
121
1.20
0.94
1.03
1.19
1.08
1.46
1.48



Supplementary Table 3: Summary of advantages and disadvantages of library construction methods.

Library
RNA Ligation

lllumina RNA Ligation

lllumina RNA Ligation - SPRI

SMART

Hybrid
NNSR

NNSR no actD
BiSulfite "S"

BiSulfite "H"

dUTP

dUTP oligo(dT)

Advantages

High complexity; High strand specificity

Overall high quality

Overall high quality

Better than SMART

High strand specificity;

Simple library construction

Simple library construction

Similar to standard library construction

Similar to standard library construction

Overall high quality;
Similar to standard library construction
Overall high quality;
Similar to standard library construction

Disadvantages
Lengthy method with multiple size selection steps
requiring large amounts of RNA,;
Uneven coverage; Single end sequencing®
Single end sequencing®, Uneven coverage;
Low coverage of 3' ends
Shorter cDNAs not removed from library;
Single end sequencing® Uneven coverage;
Low coverage of 3' ends
Inefficient process -- few reads;
Overall low quality
Overall low quality
Overall low quality

Overall low quality

Sequence alignment issues;

Low strand specificity; Uneven coverage;
Low coverage of 5' ends

Sequence alignment issues;

Low strand specificity; Uneven coverage;
Low coverage of 5' ends

a: Not an intrinsic limitation of the protocol; with appropriate modification of the protocol, paired-end sequencing can presumably be performed



Supplementary Table 4: Comparison of technical details of library construction methods.

Library Time Total Approx. Starting Applicability
Required number of Reagent material to small RNA
(days) steps cost ($) used
(RNA, ng)
RNA Ligation 8 19 250 1200 Yes
lllumina RNA Ligation ) 16 240 100° Yes
lllumina RNA Ligation - SPRI 4 12 220 100° Yes
SMART 5 8 80 100 Yes
Hybrid 5 13 90 500 Yes
NNSR 4 9 90 250 Unclear
NNSR no actD 4 9 90 250 Unclear
BiSulfite "S" 6 19 540% 1000° No
BiSulfite "H" 6 19 540% 1000° No
dUTP 5 17 430° 200 No
dUTP oligo(dT) 5 17 440° 200 No
Control 5 15 430° 200 No
Control oligo(dT) 5 15 430° 200 No

a: Cost is lower if individual reagents are used instead of lllumina standard library construction kit
b: Starting material was 100 ng -- cDNA was split later for the two variants of this method (see Methods for details).
c: Starting material was 1000 ng -- only 96 ng of 212 ng was used for reverse transcription

d: Starting material was 1000 ng -- only 40 ng of 152 ng was used for reverse transcription

Kits available?

No

Partially (Small RNA Library Construction v1.5)
Partially (Small RNA Library Construction v1.5)
No

No

No

No

Mostly (Bisulfite & Standard Library Construction)
Mostly (Bisulfite & Standard Library Construction)
Mostly (Standard Library Construction)

Mostly (Standard Library Construction)

Standard Library Construction

Standard Library Construction



Supplementary Table 5: Primer sequences.

Primer Name

SMART tagged random primer
5’ SMART oligo

SMART reverse primer

3’ RNA adaptor oligo

Hybrid reverse transcription primer
5’ Hybrid oligo

Hybrid forward

Hybrid reverse

1st strand NNSR primers

2nd strand NNSR primers
NNSR forward

NNSR reverse

SBS11

Nature Methods: doi: 10.1038/nmeth.1491

Primer Sequence

5-CATTGAGCTGAACCGAGTCCAGCAGNNNNNN
5-TTTCCCTACACGACGCTCTTCCGATCTrGrGrG

5- CAAGCAGAAGACGGCATACGACGATCTCGACATTGAGCTGAACCGAGTCCAGCAG

5’- AGAUCGGAAGAGCGGUUCAGCAGInvdT

5- GGCATTCCTGCTGAACCGCTCTTCCGATCT

5- CTCTTTCCCTACACGACGCTCTTCCGATCTrGrGrG
5-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCT

5- CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGC
5-TCCGATCTCTNNNNNNN

5-TCCGATCTGANNNNNNN

5- AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTCT
5- CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATCTGA
5-CGATCTCGACATTGAGCTGAACCGAGTCCAGCAG



Supplementary Note 1

Comparison of dUTP and Illumina RNA ligation methods

Overall, the dUTP and Illumina RNA ligation protocols performed best across the broadest range
of evaluation criteria, including strand specificity, measures critical for genome annotation
(evenness and continuity of coverage), and measures critical for expression profiling. The dUTP
approach performed significantly better in fraction of mapped reads and evenness of coverage
(important for genome annotation), and slightly better at expression profiling (especially based
on RMSE measures) and 3’ end coverage. The Illumina RNA ligation methods performed
somewhat better for strand specificity and single-end complexity, but paired-end dUTP reads had
excellent complexity. The two methods were comparable for continuity and 5’ end detection,
involve comparably simple protocols (with dUTP being slightly simpler), and require no

specialized computational processing.

Supplementary Note 2

Monotemplate sequencing issue

Because each of the NNSR, SMART, and Hybrid libraries has a short, identical sequence at the
start of every read and must be sequenced at a lower cluster density, these libraries generate less
usable sequence per lane than standard libraries with current Illumina sequencing protocols.

For the NNSR libraries, we used a lower cluster density to resolve issues resulting from the first
two bases being identical in each read, creating a "monotemplate." This monotemplate issue is a
problem for the Illumina Genome Analyzer software (v.1.5) because it uses the first two cycles
to determine where clusters reside in an image (template generation) and this results in some

images being "denser" than they would be given a random base distribution, i.e. 100% of the



clusters lighting up in the "A" image compared to 25% lighting up in the "A" image. As a result
of this higher image density, the software is unable to find cluster locations using cross-
correlation of the pixel intensities. Lowering the cluster density alleviates this problem, but
results in less sequence being generated than for a library without monotemplate issues loaded at
standard cluster density. This was also a potential problem that may have reduced the fraction of
Passing Filter bases for the SMART and Hybrid libraries, but without any special handling their
cluster densities turned out to be somewhat lower relative to other contemporary sequencing

runs.

Supplementary Note 3

Microarray data

Saccharomyces cerevisiae strain BY4741 was grown to mid-log and cells were harvested by
freezing in liquid nitrogen. Total RNA was isolated using the RNeasy Midi or mini Kits (Qiagen)
according to the provided instructions for mechanical lysis. Samples were quality controlled with
the RNA 6000 Nano (series II) kit for the Bioanalyzer 2100 (Agilent). Genomic DNA from
Saccharomyces cerevisiae strain BY4741 was isolated using Genomic-tip 500/G (Qiagen) using
the provided protocol for yeast. DNA samples were sheared using Covaris sonicator to 500-1000
bp fragments, as verified using DNA 7500 and DNA 12000 kit for the Bioanalyzer 2100
(Agilent). Independently sheared samples labeled with Cy3 and Cy5 were highly correlated (R>
.97 in each of four independent hybridizations), indicating that the shearing procedure is
reproducible and unbiased. Total RNA samples were labeled with Cy3 (cyanine fluorescent
dyes) and genomic DNA samples were labeled with Cy5 using a modification of the protocol

developed by Joe DeRisi (UCSF) and Rosetta Inpharmatics (Kirkland, WA) that can be obtained



at www.microarrays.org and as described”. Two biological replicates of Cy3 labeled RNA

samples were mixed with a reference Cy5 labeled genomic DNA sample and hybridized on a
two-color Agilent 4x44K §. cerevisiae array (commercial Agilent array; four to five probes per
target gene). After hybridization and washing per Agilent instructions, arrays were scanned using
an Agilent scanner and analyzed with Agilent’s feature extraction software version 10.5.1.1. For
each probe, the median signal intensities were background subtracted for both channels and
combined by taking the log2 of their ratio. To estimate the absolute expression values for each
gene, we took the median of the log2 ratios across all probes. The experiments were highly
reproducible; most biological replicates correlated at R = .99 and replicates with R < .95 were
removed. Different biological replicates were combined using Quantile normalization to estimate

the absolute expression level per gene.

33. Wapinski, 1. et al. Gene duplication and the evolution of ribosomal protein gene regulation in
yeast. Proc. Natl. Acad. Sci. USA 107, 5505-5510 (2010).



Supplementary Figures™:
Strand-specific RNA sequencing
reveals extensive regulated long
antisense transcripts that are

conserved across yeast species

*Figure captions appear in Chapter 4
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Supplementary Figure 2 - Units statistics
a Antisense unit length histogram
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Supplementary Figure 3 - Manual Curation Example
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Supplementary Figure 4 - Antisense Units’ Promoter Types
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Supplementary Figure 5 - Expression patterns of
antisense units and their neighboring genes
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Supplementary Figure 6 - UTR length of genes with antisense ending close by
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Supplementary Fiqure 7 - Expression Measurements
a Comparing YPE to YPD
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Supplementary Figure 8 - Mutant Effect on Transcription
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Supplementary Figure 9 - Mutant effect on sense differential expression
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Supplementary Information:
Full-length transcriptome
assembly from RNA-Seq data

without a reference genome

108



Supplementary Information for Grabherr et al., 2011

SUPPLEMENTARY NOTE ... iiiiiiiiiiiirrrrrrssssssssssssssss s s s s s s s ss s s s ns s sssssssssssssssssnnnnnnnns 2
Assembly of the fission yeast transcriptome ... 2
Assembly of the mouse transcriptome...........coooiiiccciii e e 2

SUPPLEMENTARY METHODS ... ooiiiiiececeteessssssss s s s s s s s s s s ss s s s nm s ssssssssssssnnnnnnns 3
Yeast strains and growth conditions. ... 3
Mouse dendritic cell isolation and tissue culture............cccooiiiiriiinninn, 4

SUPPLEMENTARY FIGURES AND LEGENDS ........... s e e e e e e 5
Supplementary Figure 1. Impact of the number of reads on the oracle set...................... 5
Supplementary Figure 2. UTR differences between Trinity transcripts and the
annotated referenCe..........oo i 6
Supplementary Figure 3. Distribution of expression levels for protein-coding and
E= Lo =T = T =T €= T =T o T o 7
Supplementary Figure 4. Trinity identifies antisense transcription in yeast..................... 8
Supplementary Figure 5. Examples for UTR exon additions in mouse.............ccceeec.... 9
Supplementary Figure 6. The number of full-length transcripts reconstructed by each
method at different numbers of input reads. ... 10
Supplementary Figure 7. The number of full-length transcripts reconstructed by each
method at different expression levels. ... ——— 11
Supplementary Figure 8. Butterfly edge pruning and path finding. ... 12
Supplementary Figure 9. The effect of the choice of alignment program on mapping-
first transcriptome reconstruction. ... 13

SUPPLEMENTARY TABLES ........ .o rrrmssss s s s s s s s s s s s e e s s e e nmmnnn 14
Supplementary Table 1. Comparison of sensitivity of different methods on the S.
pombe tranSCripPtoOME. ....... .. e e 14
Supplementary Table 2. Comparison of sensitivity of different methods on the mouse
L= T =T o g o Lo o 1= 15
Supplementary Table 3. Base error stats for Trinity transcripts........ccceeevveiieeereeceeeeeeee. 16

oY =Y (= 3 VoSO 17



SUPPLEMENTARY NOTE

Assembly of the fission yeast transcriptome

Inchworm assembled the yeast data set into 811,364 contigs with length at least 48 bases (2*(k-
1), k=25, see above). Only 8,234 of the contigs are at least 350 bases long (approximately the
mean insert size in our RNA-Seq library) and those comprise 13.4 Mb of total sequence. At this
stage, 15% (660 of 4265) of the Inchworm-reconstructed, Oracle-matching, transcripts were
recovered as falsely fused into single contigs. These mostly correspond to adjacent genes that
overlap in their untranslated regions (UTRs), a common phenomenon in yeasts"*. By examining
the clustering of read mate-pairings, 375 of the 660 falsely-fused transcripts were automatically
teased apart into individual full-length transcripts (see above). Chrysalis grouped all contigs into
23,607 components and built a set of de Bruijn graphs, with a total of 24M unique k-mer nodes.
After filtering and analyzing the graph, Butterfly outputs 27,841 linear contigs longer than 100

bases, grouped into a final set of 23,232 components.

Assembly of the mouse transcriptome

First, Inchworm assembled the reads into ~1.9M contigs (43 Mb resides in 32,466 sequences >=
350 bp), containing 7,346 annotated full-length transcripts. Second, Chrysalis pooled the contigs
into 156,211 components. Finally, Butterfly reported 179,340 contigs (48,497 of length greater
than 350bp), residing in 151,115 remaining components, fully capturing the 8,185 transcripts at

7,749 loci at full length.



SUPPLEMENTARY METHODS

Yeast strains and growth conditions.
Cultures were grown in the following rich medium: Yeast extract (1.5%), Peptone (1%),
Dextrose (2%), SC Amino Acid mix (Sunrise Science) 2 grams per liter, Adenine 100 mg/L,

Tryptophan 100 mg/L, Uracil 100 mg/L, at 200 RPM in an New Brunswick Scientific air-shaker.

For glucose depletion (mid-log, diauxic shift, and stationary phase samples), overnight cultures
were grown to saturation in 3 ml rich medium. From the 3 ml overnight cultures, 300 ml of rich
media was inoculated at the ODgoo corresponding to 1x10° cell/ml and grown in New Brunswick
Scientific shaking water baths. Culture density was monitored by ODggo. Glucose levels were
monitored using the YSI 2700 Select Bioanalyzer. Cells were harvested at mid-log, diauxic shift
(defined as the timepoint when glucose is depleted from the medium), and when growth plateaus

by quenching them in 60% liquid methanol at -40°C that was later removed by centrifugation at -
9°C and stored overnight at -80°C. Harvested cells were later washed in RNAse-free water and

archived in RNAlater (Ambion) for future preparations.

For heat shock, overnight cultures were grown in 650ml of media at 22°C to between 3x10’ and
1x10® cell/ml ODggo = 1.0. The overnight culture was split into two 300ml cultures and cells
from each were collected by removing the media via vacuum filtration (Millipore). The cell-
containing filters were re-suspended in pre-warmed media to either control (22°C) or heat-shock
temperatures (37°C). Density measurements were taken approximately one minute after cells

were re-suspended to ensure that concentrations did not change during the transfer from



overnight media. 60ml of culture were harvested at 15 minutes after re-suspension by quenching

them in 60% liquid methanol at -40°C that was later removed by centrifugation at -9°C and
stored overnight at -80°C. Harvested cells were later washed in RNAse-free water and archived

in RNAlater (Ambion) for future preparations. Cells were also harvested from cultures just

before treatment for use as controls.

Mouse dendritic cell isolation and tissue culture

6-8 weeks female C57BL/6J mice were obtained from the Jackson Laboratories. Bone Marrow
DCs were collected from femora and tibiae and plated on non-tissue culture treated plastic dishes
in RPMI medium (Gibco Invitrogen) supplemented with 10% FBS, L-glutamin,
penicillin/streptomycin, MEM non-essential amino acids, HEPES, sodium pyruvate, (-
mercaptoethanol, and GM-CSF (15 ng/mL; Peprotech). At day 5, floating CD11c+ cells were
collected and sorted on MACS columns using the CD11c (N418) MicroBeads kit (Myltenyi
Biotec). CD11c+ cells where replated at a concentration of 10° cells/ml and collected 12 hours

post sorting.



SUPPLEMENTARY FIGURES AND LEGENDS
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Supplementary Figure 1. Impact of the number of reads on the oracle set.

Shown are the numbers of S. pombe genes (a, blue) or mouse genes (b, blue) or transcripts (b,
green) that are captured by the Oracle set at different numbers of input read pairs (x axis). The
oracle set begins to saturate at 25M read pairs (or S0M reads) for the S. pombe RNA-Seq data

(a), but is likely not saturated with the entire set of 53M read pairs on the mouse data set (b).
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Supplementary Figure 2. UTR differences between Trinity transcripts and the annotated
reference.
Shown are the distributions of changes in UTR length between Trinity transcripts and the

annotated reference at the 5’UTR (a,c) and 3’UTR (b,d) of S. pombe (a,b) and mouse (c,d).
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Supplementary Figure 3. Distribution of expression levels for protein-coding and antisense

transcripts.

Shown are the distributions of expression levels (FPKM) for coding (blue), long antisense

(green), and intergenic (red) Trinity-assembled transcripts in S. pombe.
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Supplementary Figure 4. Trinity identifies antisense transcription in yeast.

Shown are examples of Trinity assemblies (red) along with the corresponding annotated
transcripts (blue) and coverage of underlying reads (green) all aligned to the S. pombe genome
(for graphical clarity; no alignments were used to generate the assemblies). Trinity's assembly of

comp3099 corresponds to the predicted antisense transcript SPNCRNA.583.
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Supplementary Figure 5. Examples for UTR exon additions in mouse.
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end), and (¢) Dicer (multiple internal and 5* end UTR exons).
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Supplementary Figure 6. The number of full-length transcripts reconstructed by each
method at different numbers of input reads.

Shown are the number of annotated full-length transcripts (Y axis) reconstructed at different
input read numbers (X axis) for each of Trinity (red), TransAbyss (yellow), Abyss (blue),

SOAPdenovo (green), Scripture (purple) and Cufflinks (grey) in yeast (a) and mouse (b).
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Supplementary Figure 7. The number of full-length transcripts reconstructed by each
method at different expression levels.

Shown are the numbers of full-length Oracle transcripts (Y axis) reconstructed at different
expression quintiles (X axis) by each of Trinity (red), TransAbyss (yellow), Abyss (blue),

SOAPdenovo (green), Scripture (purple) and Cufflinks (grey) in yeast (a) and mouse (b).
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Supplementary Figure 8. Butterfly edge pruning and path finding.

(a,b) Shown are the two cases where we would remove an edge (respectively, see Methods). (¢)
Illustrates the progress of the path finding process. On the left we see the compacted graph, each
node shows the beginning and end of its sequence, and its length in square brackets. On the right
we examine 2 possible extensions for the two paths that reached node (TGC...GTA), and show

that we have L-suffix support only for the red and purple paths, and not their chimera paths.
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SUPPLEMENTARY TABLES

Supplementary Table 1. Comparison of sensitivity of different methods on the S. pombe

transcriptome.

Listed are the number of full-length (FL) genes, the percentage of false fusions, the total number

of contigs, the number of contigs that could be mapped to the genome, the number of genes hat

overlap with mapped contigs, and the average number of contigs per gene.

Scripture Cufflinks ABySS Trans- SOAP- Trinity

(blat) (blat) ABySS denovo
FL genes 2585 3913 3248 4015 1049 4338
% falsely fused genes 30 45 36 27 26 5
Total contigs 14909 4605 6343 39178 12392 27841
Contigs mapped 11714 3258 4601 31974 5456 7057
Genes captured 3838 4182 4533 4871 3400 4874
Average contig 4.37 1.07 1.06 5.08 1.01 1.37

coverage/ gene

14



Supplementary Table 2. Comparison of sensitivity of different methods on the mouse

transcriptome.

Listed are the number of full-length (FL) genes, the percentage of false fusions, the total number

of contigs, the number of contigs that could be mapped to the genome, the number of genes hat

overlap with mapped contigs, and the average number of contigs per gene.

Scripture Cufflinks ABySS Trans- SOAP- Trinity

(tophat) (tophat) ABySS denovo
FL transcripts 9086 9010 5561 7025 761 8185
FL genes 8293 8536 5500 6598 760 7749
Total contigs 300148 31121 46783 | 203085 | 145518 | 179340
Contigs mapped 119515 19342 17427 | 111309 34816 31706
Genes captured 10432 10806 9879 10685 10035 11334
Average contig 12.0 | 1.65 1.25 5.93 1.12 2.05

coverage / gene

15



Supplementary Table 3. Base error stats for Trinity transcripts.

Listed are the number of aligned bases, matches, mismatches, insertions and deletions.

S. pombe Mouse
# Full-length Trinity Transcripts 4230 8178
# aligned bases 8942895 21400061
# matching bases 8942241 21397375
# mismatches 654 2686
Mismatch rate 7.31e-05 1.26e-04
# genome inserted bases 299 1551
Genome inserted base rate 3.34e-05 7.25e-05
# transcript inserted bases 528 2875
Transcript inserted base rate 5.90e-05 1.34e-04

Nature Biotechnology: doi:10.1038/nbt.1883
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