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Goals of Genome Wide Association Studies 

• Go from trait heritability towards biological 
mechanism
• What genes/genetic variants drive heritable differences?

• Genome-wide interrogation
• Moving away from candidate gene studies
• Technological advancement and dropping cost

• Flexible application of study design
• All heritable traits can be studied 
• Biological/mathematical properties of DNA quite robust 

GWAS of Schizophrenia

GWAS of ~4,200 traits



Genetic variation: differences in the sequence of DNA among individuals. 
Mutation: a newly arisen variant 

adenine (A), thymine (T), cytosine (C), guanine (G)

What does genetic data look like?

Single Nucleotide Polymorphism
SNP

Allele 1 = C
Allele 2 = A
Bi-allelic combinations = C/C, C/A, A/A



Examples of genetic 
variation

GWAS



Genotyping
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Affymetrix:

6.0 chip
>900,000 SNPs

CNV probes
82% coverage CEU HapMap

Accuracy 99.90%

Illumina:

Human1M BeadChip
>1 million SNPs

CNV probes
95% coverage CEU HapMap

Accuracy 99.94%

• There are three chip-manufacturers: Illumina, Affymetrix & 
Perlegen

• Intensity measures are produced for both alleles. Genotypes 
are assigned based on clustering of these two intensities.



From DNA to data



Genotype Intensities
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Good SNP (Illumina chip)
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Same SNP, normalized intensities
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T/G

G/G

T/T



Same SNP, different view
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p2 q2

2pq



Bad SNP
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Another bad SNP
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Another bad SNP
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Deletion?



Another bad SNP
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PLINK data format of GWAS data

.fam file

FID       IID        PID        MID      SEX      AFF
P1  A A  A C  C G  T T  A A  T T
P2  A C  A A  C G  G T  A C  T T
P3  C C  A C  G G  T T  A A  T T
P4  C C  A A  G G  G T  A A  T T

0101010010101010101
1010011101010101010
1101110101001010101
1101001011101101010
1101010101010111010

.bim file (or .map file) .ped file

.bed file
FID = family ID
IID = Individual ID
PID = paternal ID
MID = maternal ID
AFF = affection status
CHR = chromosome
POS = position
A1 = 0 allele
A2 = 1 allele

CHR  POS                     SNP ID   A1    A2

Subjects Genetic variants Genotype data



GWAS QC



GWAS Quality Control (QC)

• GOAL: Remove bad samples/SNPs, keep good samples/SNPs

• Preliminary strategies (first pass)
• Poorly genotyped samples / SNP markers
• Deviations from Hardy-Weinberg
• Related or duplicated samples (population-based data)

• Follow-up strategies
• Batch effects
• Quality differences between datasets
• Comparison with reference data
…and more



Sample QC

• Poorly genotyped individuals 
• Indications of sample mix-up (sex check or ancestry match)
• Poor quality DNA (high number of failed SNP calls)
• Contaminated DNA (unusual levels of heterozygosity)

• Related individuals
• Family-based and population-based samples require different experimental 

designs 
• Related individuals can bias test statistics across the whole-genome
• In family-based association: Mendelian errors used as QC  



SNP QC

• Poorly genotyped SNPs
• Poor primer design / nonspecific DNA binding (high number of failed SNP 

calls)
• Poor clustering of genotype intensities (deviation from HWE)
• Mendelian errors (if family-based data available)
• Uninformative SNPs (too rare or mono-allelic) 

• Follow-up on association signals
• No QC protocol will eliminate all instances of genotyping error 
• Important to re-analyze original intensity of significant associations (whenever 

possible)
• For meta-analysis, examining heterogeneity of SNP effect 



Preliminary QC steps

• SAMPLE: Sex-check (chr X heterozygosity)
• SNP: Genotyping Call Rate (genotypes missed in individuals)
• SAMPLE: Sample Call Rate (individuals missing genotypes)
• SNP: Hardy-Weinberg Equilibrium 
• SAMPLE: Proportion of Heterozygosity
• SAMPLE/SNP: Mendelian errors



Confirming genetic sex
• Primary question: Is the sample-level data correctly matching the SNP data?

FID         IID       PEDSEX       SNPSEX       STATUS            F
T304      T30411            1            1           OK       0.9857

A0641C   06410021C            1            1           OK       0.9841
T06013    T2601310            2            2           OK     -0.06164
T01533    T2153321            1            1           OK       0.9841
T330      T33021            1            1           OK       0.9867
T191      T19120            2            2           OK      0.01155
T329      T32911            1            1           OK       0.9839

T07981    T2798111            1            1           OK       0.9822
A0601C   06010021C            1            1           OK       0.9858
A1008C   10080011C            1            1           OK       0.9817
A0880C   08800331C            1            1           OK       0.9818
T00894    T2089420            2            2           OK      0.01927
A0701C   07010011C            1            1           OK       0.9807
T02911    T2291121            1            1           OK       0.9851
T00588    T2058811            1            2      PROBLEM      -0.3396
A0805C   08050031C            1            1           OK       0.9821
T07755    T2775520            2            2           OK     -0.09906
T03676    T2367611            1            1           OK       0.9845
T082      T08220            2            1      PROBLEM       0.9833

Female sex = X/X
Male sex = X/Y

Example .sexcheck file from PLINK (male=1, female=2)

Chromosome X F-statistic

Male

Female



SNP genotyping call rate (or “missingness”)

• Usually done iteratively
• Remove SNPs with < 95% call rate
• Run sample QC
• Remove SNPs with < 98% call rate

• For case/control data
• Look at difference in genotyping rate
• Threshold usually at > 2% call rate difference

CHR  SNP         N_MISS  N_GENO  F_MISS
1    rs12565286  6       200     0.03
1    rs12124819  8       200     0.04
1    rs4970383   0       200     0
1    rs13303118  0       200     0
1    rs35940137  0       200     0
1    rs2465136   1       200     0.005
1    rs2488991   0       200     0
1    rs3766192   0       200     0
1    rs10907177  0       200     0

Example .lmiss file from PLINK

CHR  SNP         F_MISS_A  F_MISS_U  P
1    rs12565286  0.03125   0.03093   1
1    rs12124819  0.05208   0.03093   0.4974
1    rs2465136   0         0.01031   1
1    rs4970357   0         0.02062   0.4974
1    rs11466691  0         0.01031   1
1    rs11466681  0.01042   0.01031   1
1    rs34945898  0.03125   0         0.1211
1    rs715643    0.05208   0.02062   0.2787
1    rs13306651  0.01042   0.03093   0.6211

Example .missing file from PLINK



Sample genotyping call rate
Example .imiss file from PLINK
FID      IID      MISS_PHENO  N_MISS  N_GENO  F_MISS
NA20505  NA20505  N           122     100310  0.001216
NA20504  NA20504  N           1406    100310  0.01402
NA20506  NA20506  N           204     100310  0.002034
NA20502  NA20502  N           847     100310  0.008444
NA20528  NA20528  N           219     100310  0.002183
NA20531  NA20531  N           96      100310  0.000957
NA20534  NA20534  N           338     100310  0.00337
NA20535  NA20535  N           182     100310  0.001814
NA20586  NA20586  N           214     100310  0.002133

http://zzz.bwh.harvard.edu/plink/summary.shtml#missing

http://zzz.bwh.harvard.edu/plink/summary.shtml


Hardy-Weinberg Equilibrium (HWE)

} A genetic variant is said to be in HWE if the genotype 
frequencies can be predicted by the allele 
frequencies in the following way:
} If:

} f(A1) = p
} f(A2) = q

} Then:
} f(A1/A1) = p2

} f(A1/A2) = 2pq
} f(A2/A2) = q2

p2 + 2pq + q2 = 1

p + q = 1
Example:

p = 0.2 
q = 0.8

p2 = 0.04
2pq = 0.32
q2 = 0.64

In C/T SNP terms:

C allele freq. = 20% 
T allele freq.= 80%

C/C freq. = 4%
C/T freq. = 32%
T/T freq. = 64%



Testing for deviation from HWE

Deviations from HWE can be caused by:
• Non-random mating (inbreeding, assortative mating, …)
• Population stratification
• Mutation
• Limited population size
• Random genetic drift
• Gene flow
• Genotyping errors
• Selection (→ may be due to true association!)

So only extreme deviation from HWE (p < 10-6) is 
worrisome.

CHR  SNP         TEST   A1  A2  GENO       O(HET)   E(HET)   P
1    rs12565286  ALL    C   G 0/17/170   0.09091  0.08678  1
1    rs12565286  AFF    C   G 0/6/87     0.06452  0.06243  1
1    rs12565286  UNAFF  C   G 0/11/83    0.117    0.1102   1
1    rs12124819  ALL    G A   0/77/108   0.4162   0.3296   6.919e-05
1    rs12124819  AFF    G A   0/41/50    0.4505   0.3491   0.004878
1    rs12124819  UNAFF  G A   0/36/58    0.383    0.3096   0.02001
1    rs4970383   ALL    A   C   10/68/115  0.3523   0.352    1
1    rs4970383   AFF    A   C   3/36/57    0.375    0.3418   0.5488
1    rs4970383   UNAFF  A   C   7/32/58    0.3299   0.3618   0.401

Example .hardy output in PLINK



Proportion of heterozygosity (Fhet)

http://zzz.bwh.harvard.edu/plink/ibdibs.shtml#inbreeding

http://zzz.bwh.harvard.edu/plink/ibdibs.shtml


Mendelian errors

https://www.cog-genomics.org/plink/1.9/basic_stats#mendel

• Requires parent-offspring data

• Similar to genotyping rate, can be 
examined at sample and SNP level

• High sample-level mendel error rate
• Parental uncertainty

• High SNP-level mendel error rate
• Poor genotype quality

AA AA

AT

https://www.cog-genomics.org/plink/1.9/basic_stats


• Properties of linkage disequilibrium reduce 
the loss of signal sensitivity when removing 
SNPs

• Strict multiple testing correction requires 
very large samples - no single sample will 
drive a signal

• LD must be taken into account when 
examining genetic relatedness, population 
stratification, and interpreting association

Linkage disequilibrium (LD) allows us to be more robust with our QC protocols



Q and A session (5 min)

What is Linkage?

What about XXY? X0? XXX individuals?

What about somatic mutations?
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Genetic Relatedness



Genetic relatedness using Identity-By-Descent (IBD) calculation  

• Question: How much does a pair of samples share 0, 1, or both 
alleles?

• Identical twins: Shares both alleles across entire genome (barring 
mutation events)

• Requires using LD-pruned SNPs for accurate estimates
• Want each SNP to be an “independent” marker

• Used to both “confirm” and “filter” related individuals



Checking genotype relatedness across samples

FID1     IID1     FID2     IID2     RT  EZ  Z0      Z1      Z2      PI_HAT  PHE  DST       PPC     RATIO
NA20505  NA20505  NA20506  NA20506  UN  NA  0.9872  0.0000  0.0128  0.0128  -1   0.771435  0.3446  1.9712
NA20505  NA20505  NA20502  NA20502  UN  NA  0.9888  0.0096  0.0016  0.0064  -1   0.770233  0.3950  1.9808
NA20505  NA20505  NA20528  NA20528  UN  NA  0.9733  0.0267  0.0000  0.0133  -1   0.770068  0.2922  1.9606
NA20505  NA20505  NA20531  NA20531  UN  NA  0.9789  0.0205  0.0006  0.0109  -1   0.770976  0.7407  2.0479
NA20505  NA20505  NA20534  NA20534  UN  NA  0.9602  0.0398  0.0000  0.0199  -1   0.772123  0.3046  1.9631
NA20505  NA20505  NA20535  NA20535  UN  NA  0.9650  0.0350  0.0000  0.0175  -1   0.771054  0.6510  2.0285
NA20505  NA20505  NA20586  NA20586  UN  NA  0.9728  0.0272  0.0000  0.0136  -1   0.770687  0.4281  1.9869
NA20505  NA20505  NA20756  NA20756  UN  NA  0.9675  0.0325  0.0000  0.0163  -1   0.770762  0.6902  2.0365
NA20505  NA20505  NA20760  NA20760  UN  NA  0.9344  0.0656  0.0000  0.0328  0    0.770978  0.8856  2.0904

Example of .genome file in PLINK



Using genetic relatedness estimates

• Confirm unrelated or “population-based” sample ascertainment
• Filter out related samples (pi-hat > 0.2 often used)
• “Cryptic relatedness” – related individuals identified in ”unrelated” sample

• Confirm family structure (pedigree)
• Ensure parent-child and sibling relationship

• Watch out for distinct ancestries
• Can skew IBD estimates and incorrectly identify recent relatedness
• PCrelate more robust to these patterns 

https://rdrr.io/bioc/GENESIS/man/pcrelate.html

https://rdrr.io/bioc/GENESIS/man/pcrelate.html




































Using PCs in GWAS studies
• Include as covariates in a regression model
• PCs that associate to phenotype very 

important to include
• Logistic regression sensitive to inclusion of 

many PCs
• Linear regression more robust
• Mixed linear models can replace PCs with 

genetic relatedness (GRM) matrix
• Adding PCs as well still seems to help..





Phasing and Imputation



Imputation

…but I want to analyze more SNPs!!!!

Impute: “represent as being done, caused, or possessed”

Main goal: Using local Linkage Disequilibrium (LD) patterns to infer the genotype 
of a SNP not on your array

Main process: Map your GWAS array SNPs to whole-genome sequence data (i.e.
“reference panels”) to impute SNPs not on your array   



HapMap (haplotype map) Project

270 whole-genome sequenced samples:

30 parent-offspring trios of the Yoruba from Ibadan, Nigeria (YRI) 
30 trios of Utah residents with European ancestry (CEU) 
45 individuals from Beijing, China (CHB)
45 individuals from Tokyo, Japan (JPT)

The International HapMap Consortium (2005). A haplotype map of 
the human genome. Nature.

Reference panels / Haplotypes



Phase 1: 1,092 individuals from 14 populations..

Phase 3: 2,504 individuals from 26 populations (~500 samples 
form each 5 continental ancestry groups, with ~5 populations 
for each group)

1000 Genomes Project

The 1000 Genomes Project Consortium (2012). An integrated map of genetic variation from 1,092 human genomes. Nature.
The 1000 Genomes Project Consortium (2015). A global reference for human genetic variation. Nature.

Reference panels / Haplotypes



The Haplotype Reference Consortium (HRC)

The Haplotype Reference Consortium (2016). A reference panel of 64,976 haplotypes for genotype imputation. Nature Genetics.

Reference panels / Haplotypes



Linkage disequilibrium

Ancestral 
haplotypes in 
the population



Linkage disequilibrium

Ancestral 
haplotypes in 
the population

Novel variant arises



Linkage disequilibrium

Generation
1

Pool of Chromosomes

Recombination 
occurs each 
generation
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Linkage disequilibrium
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Linkage disequilibrium

Recombination 
occurs each 
generation

Generation
1
2
3
…

many

Pool of Chromosomes



Linkage disequilibrium

Recombination 
occurs each 
generation

Generation
1
2
3
…

many

Pool of Chromosomes Chromosomes are a patchwork of the 
ancestral haplotypes, but local LD still 
persists



What is phasing

• In this context it is really Haplotype Estimation
•We take genotype data and try to reconstruct the haplotypes
• Can use reference data to improve this estimation



Phasing in Eagle

• Input a target sample 
and a library of reference 
haplotypes
• Selection of conditioning 

haplotypes.
• Generation of HapHedge

data structure.
• Exploration of the 

diplotype space.



Imputation
All HapMap/1KG Whole genome sequence SNPs
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Imputation
All HapMap/1KG Whole genome sequence SNPs

Overlap SNPs

Illumina GWAS array SNPs

Affymetrix GWAS array SNPs



Imputation
All HapMap/1KG Whole genome sequence SNPs

Overlap SNPs

Illumina GWAS array SNPs

Affymetrix GWAS array SNPs

LD



Imputation
All HapMap/1KG Whole genome sequence SNPs

Overlap SNPs

Illumina GWAS array SNPs

Affymetrix GWAS array SNPs
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LD



Imputation
All HapMap/1KG Whole genome sequence SNPs

Overlap SNPs

Illumina GWAS array SNPs

Affymetrix GWAS array SNPs
LD

LD

Hidden Markov Model



Imputation output and performance
SNP INFO file: Main Metric (Rsq)



Good imputation

Bad imputation

Imputation output and performance



Phasing/Imputation software

• Imputation programs
• IMPUTE2
https://mathgen.stats.ox.ac.uk/impute/impute_v2.html
• MaCH / minimac
http://genome.sph.umich.edu/wiki/Minimac

• Also need to Phase data to distinguish haplotypes
• Shapeit
www.shapeit.fr
• Beagle
http://faculty.washington.edu/browning/beagle/beagle.html
• Eagle / Eagle2
https://data.broadinstitute.org/alkesgroup/Eagle/

• Overall a very computationally expensive process

https://mathgen.stats.ox.ac.uk/impute/impute_v2.html
http://genome.sph.umich.edu/wiki/Minimac
http://www.shapeit.fr/
http://faculty.washington.edu/browning/beagle/beagle.html
https://data.broadinstitute.org/alkesgroup/Eagle/


Imputation Services - Michigan
https://imputationserver.sph.umich.edu/index.html#!

https://imputationserver.sph.umich.edu/index.html


Imputation Services - Sanger
https://imputation.sanger.ac.uk/

https://imputation.sanger.ac.uk/


Q and A session (5 min)

• What are the limits of imputation?

• How do imputation servers afford to do it?
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Association testing



Association testing

• Main question: Does the phenotype examined associate/correlate 
with the genetic variant? 



Tests of SNP association

• Case/control:
• Chi-square test on contingency table
• Fisher’s exact test
• Cochran-Mantel-Haenszel test 
• Cochran-Armitage trend test
• Logistic regression

• Case/control & quantitative traits:
• Permutation
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Chi-square test
• plink --assoc = chi-square test on alleles
• Null hypothesis: alleles are independent of disease state

• n = the number of allele – disease combinations (= 4)
• Oi = an observed frequency
• Ei = an expected (theoretical) frequency, asserted by the null 

hypothesis of no independence between allele and disease
• X2 = the test statistic that asymptotically approaches a χ2 distribution

Cases Controls Total

Allele 1 18 12 30

Allele 2 42 28 70

Total 60 40 100

2
2

1

( )n
i i

i i

O E
E=

-åχ =

87

Expected case count
of allele 1:

0.6 * 30 = 18

x2 stat = 0
p=1



Fisher’s exact test
• plink --fisher = Fisher’s exact test
• Null hypothesis: alleles are independent of disease state
• Should be used instead of the chi-square test if ≥ 1 cells

have ≤ 5 observations. 
• More computationally expensive than chisq test
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Cases Controls Total

Allele 1 a b a+b

Allele 2 c d c+d

Total a+c b+d n

æ öæ ö
ç ÷ç ÷
è øè ø

æ ö
ç ÷
è ø

a + b c + d
a c

p = 
n

a + c



Cochran-Mantel-Haenszel (CMH) test
• plink --mh = Cochran-Mantel-Haenszel test
• Comparable to chi-square test, but within different 

groups (such as different subpopulations to correct 
for stratification)

å
å

2
2
MH 3 2

{| [a - (a+ b)(a+ c) / n| -0.5}
χ =

(a+ b)(a+ c)(b+d)(c +d) / (n - n )

Pop 1 Cases Controls

Allele 1 a b

Allele 2 c d

Pop 2 Cases Controls

Allele 1 a b

Allele 2 c d

89



Cochran-Armitage trend test
• plink --model = 

• Cochran-Armitage trend test
• Allelic test: D vs d
• Genotypic test: DD vs Dd vs dd
• Test for dominant effect of D: (DD & Dd) vs dd
• Test for recessive effect of D: DD vs (Dd & dd)

90

Chi-square tests



91

Nr. of A alleles 0 1 2

Prop. of Cases .615 (11/18) .596 (37/62) .561 (50/89)

Cases Controls Total

AA 11 7 18

Aa 37 25 62

aa 50 39 89

Total 98 71 164

• Cochran-Armitage trend test
• Null hypothesis: the line has zero 

slope
• Does not assume Hardy-Weinberg 

equilibrium (HWE)
• Assumes that there are additive 

effects
• More conservative than the chi-

square test 

Cochran-Armitage trend test



Logistic regression
• plink --logistic = logistic regression (= regression analysis 

for categorical data)
• A useful way to describe the relationship between one or more risk 

factors (alleles + covariates) and a binary trait (case/control). 
• Allows testing of allelic, genotypic, dominant & recessive effects.

æ ö
ç ÷
è ø

1 1 2 2 i i
Pln = α + x  +  x  + ... x

1 - P
! ! !

} Plink gives the p-value and the odds ratio (OR) of the risk 
factor

} OR = eb

92



• Odds Ratio (OR) = a measure of effect size, describing 
the strength of association between two binary data 
values (alleles 1 & 2 – case & control status).

Cases Controls

Allele 1 a b

Allele 2 c d

a×dOR =
b× c

} An OR of 1.2 for example, means that the odds (not the 
probability!) of getting the disease increases with a factor 
of 1.2 if you carry the risk allele (odds =         ). 

Cases Controls

Allele 1 120 100

Allele 2 100 100
OR = 1.2

93

P
1- P

Case/control odds ratio



Case/control phenotype
• No a priori hypothesis: 

• Chi square test genotypic (2×3): --model
• Logistic regression – genotypic (allows covariates): --logistic

• Additive effects:
• Cochran-Armitage test (doesn’t assume HWE) (2×2): --model
• Chi square test allelic (large sample size) (2×2): --assoc
• Fisher’s exact test allelic (small sample size) (2×2): --fisher
• Logistic regression - allele test (allows covariates): --logistic

• Dominant effects:
• Chi square test genotypic (2×2): --model
• Logistic regression – dominance test (allows covariates): --logistic

• Recessive effects:
• Chi square test genotypic (2×2): --model
• Logistic regression – recessive test (allows covariates): --logistic

94



Permutation

}Square = male

}Circle = female

}Green = affected

}Yellow = healthy

}Red circle = disease
susceptibility allele

95

} This empirical method evaluates how often a given p-value would arise by 
chance if the study were repeated without any true associations.



Permutation
• How is the empirical p-value calculated?

• (rank of the p-value of the real dataset) / (nr of permutations)

96

Distribution of p-values 
or test statistics for 
1000 samples with 
randomly swapped 
phenotypes

Suppose the p-value or test statistic of the real 
association test is ranked at nr 3 (i.e. there are 
2 p-values that are more significant)

Empirical p-value = 
3/1000 = .003



Permutation
• Advantages

• Does not assume that the phenotype is normally 
distributed

• Does not assume HWE
• Better for rare alleles and small sample sizes
• Empirical p-values can be corrected for multiple testing, 

while preserving the correlational structure between all 
SNPs (= less conservative than Bonferroni correction = less 
false negatives)

• Allows for association analyses within clusters (which 
allows you to correct for population stratification and other 
confounding variables)

• Disadvantage:
• It can take a very long time to compute…

97



Permutation
• Plink can do two kinds of permutation:

• Adaptive: permutations of SNPs that are not likely to be 
significant are stopped prematurely. The advantage is that 
the permutation procedure does not have to take as long.

• max(T): all permutations are performed for all SNPs. The 
advantage is that this allows for the calculation of a p-value 
that is corrected for multiple testing.
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GWAS 
Meta-Analysis



Meta-analysis

Goal: Combine separate studies 
to increase power to discover SNP 
associations

• Evaluate summary statistics 
(quicker/lighter)

• Examine potential study bias



Significance - Weighted Z
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The test statistic Zi can be obtained from two-tailed p-
values and the direction of effect, or one-tailed p-values, 
using the inverse normal distribution function

Zi = χ i
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larger sample = larger weight



Effect size - Weighted β
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Test for Heterogeneity
Cochran’s Q

β̂ =
wiβ̂i

i=1

m

∑

wi
i−1

m
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Q = wi β̂i − β̂( )
i=1
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∑
2
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2

I 2 =100×Q− (m−1)
Q

test of distance from 
the weighted mean 



http://www.sph.umich.edu/csg/abecasis/metal/

Documentation can be found at the metal wiki:
https://genome.sph.umich.edu/wiki/METAL

Meta-analysis software: METAL

https://genome.sph.umich.edu/wiki/METAL


Polygenic Scores



Polygenic scores – adding up the effects
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Polygenic Scores (PGS or PS)
Polygenic Scores capture (part of) someone’s genetic “risk” by summing all risk alleles weighted 
by the effect sizes estimated in a Genome-Wide Association Study (GWAS)

Also known as polygenic risk scores (PRS), genetic risk score (GRS), or genome-wide score (GS)
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βC=-.02 βG=.01 βA=.002 βG=.03 βT=.025

.052

Polygenic	score:

AC GG AT CC TT

1×-.02	+	2×.01	+	1×.002	+	0×.03	+	2×.025	

Effect	size
from GWAS



Polygenic Scores
• By summing the collective 

effect sizes of many SNPs
you can quantify part of the 
genetic “risk” in an 
independent dataset

• Polygenic Scores generally 
improve when adding SNPs 
that individually didn’t 
reach genome-wide 
significance 
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http://zzz.bwh.harvard.edu/plink/profile.shtml

http://zzz.bwh.harvard.edu/plink/profile.shtml
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Q and A session (5 min)



For the GWAS practicum…
• Preparation for the GWAS practicum

• DUO VPN access
• ATGU wiki:
• https://sites.google.com/a/broadinstitute.org/atgu/atgu-wiki
• Useful UNIX commands
• https://sites.google.com/a/broadinstitute.org/atgu/getting-started/useful-unix-commands
• Logging onto Broad servers:
• https://sites.google.com/a/broadinstitute.org/atgu/getting-started

• Additional reading
• Papers behind most of the methods used in statistical genetics:
• https://sites.google.com/a/broadinstitute.org/atgu/core-publication-list
• 10 years of GWAS discovery: Visscher_GWAS10yrs_AJHG_2017.pdf
• Genetic architecture of complex traits: Timpson_GeneticArch_NRG_2017.pdf

• Final questions??

https://sites.google.com/a/broadinstitute.org/atgu/getting-started
https://sites.google.com/a/broadinstitute.org/atgu/getting-started/useful-unix-commands
https://sites.google.com/a/broadinstitute.org/atgu/getting-started
https://sites.google.com/a/broadinstitute.org/atgu/core-publication-list

