Introduction to Genome-Wide Association Studies (GWAS)

2020 ATGU welcome workshop

Presenter: Daniel Howrigan

Data group leader – Neale Lab

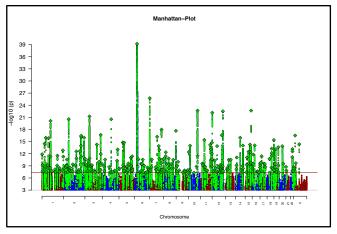
Slides adopted from:

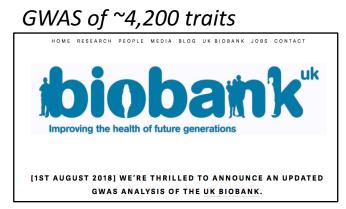
Boulder Colorado Stat Gen Workshop (Lucia Colodro Conde, Katrina Grasby, Shaun Purcell, Abdel Abdellaoui, Sarah Medland)

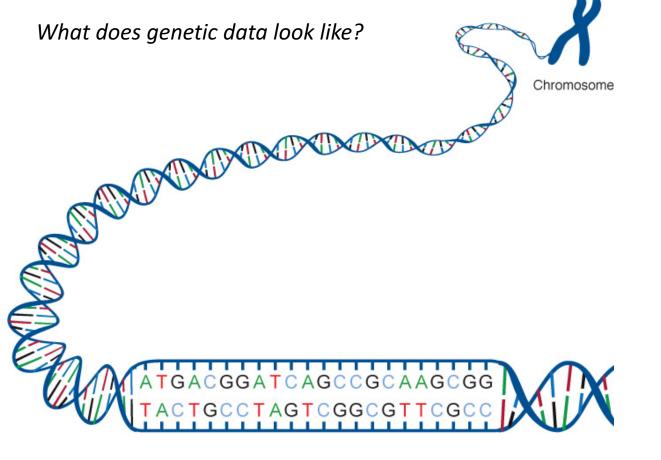
Genetics course slides from Abdel Abdellaoui @dr_appie

Lecture Format

- Part 1 (~40 minutes)
 - Goals of GWAS
 - What does the data look like?
 - GWAS Quality Control (QC)
 - 5 min breakout session
- Part 2 (~40 minutes)
 - Relatedness checking
 - Population stratification
 - Principal components analysis (PCA)
 - Imputation
 - 5 min breakout session
- Part 3 (~40 minutes)
 - Association testing
 - Meta-analysis
 - Polygenic Scoring
 - 5 min breakout session
- Preparation for module 3 / additional reading / lingering questions

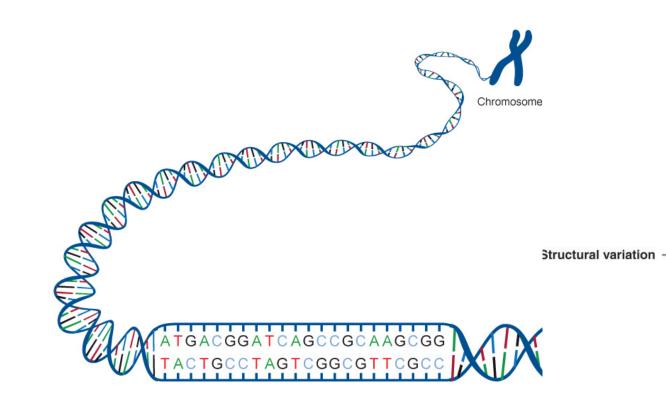

Lecture Format


- Part 1 (~40 minutes)
 - Goals of GWAS
 - What does the data look like?
 - GWAS Quality Control (QC)
 - 5 min breakout session
- Part 2 (~40 minutes)
 - Relatedness checking
 - Population stratification
 - Principal components analysis (PCA)
 - Imputation
 - 5 min breakout session
- Part 3 (~40 minutes)
 - Association testing
 - Meta-analysis
 - Polygenic Scoring
 - 5 min breakout session
- Preparation for module 3 / additional reading / lingering questions


Goals of Genome Wide Association Studies

- Go from trait heritability towards biological mechanism
 - What genes/genetic variants drive heritable differences?
- Genome-wide interrogation
 - Moving away from candidate gene studies
 - Technological advancement and dropping cost
- Flexible application of study design
 - All heritable traits can be studied
 - Biological/mathematical properties of DNA quite robust

GWAS of Schizophrenia


adenine (A), thymine (T), cytosine (C), guanine (G)

Single Nucleotide Polymorphism SNP TGACGGATCAGC GCAAGCG ACTGCCTAGTCGGCGTTCGC TGACGGATCAGC AGCAAGCG ACTGCCTAGTCGTCGTCGC

Allele 1 = C Allele 2 = A Bi-allelic combinations = C/C, C/A, A/A

Genetic variation: differences in the sequence of DNA among individuals. Mutation: a newly arisen variant

Examples of genetic variation

Single nucleotide

substitutions

Sequence variation

- insertions | 'indels'
- deletions

2bp to 1,000bp

- VNTRs: microsatellites, minisatellites
- indels
- inversions
- di-, tri-, tetranucleotide repeats

1kb to submicroscopic

- copy number variants
- segmental duplications
- inversions, translocations
- copy number variant regions
- microdeletions, microduplications

Microscopic to subchromosomal

- segmental aneusomy
- chromosomal deletions (losses)
- chromosomal insertions (gains)
- chromosomal inversions
- intrachromosomal translocations
- chromosomal abnormality
- heteromorphisms
- fragile sites

Whole chromosomal to whole genome

- interchromosomal translocations
- ring chromosomes, isochromosomes
- marker chromosomes
- aneuploidy

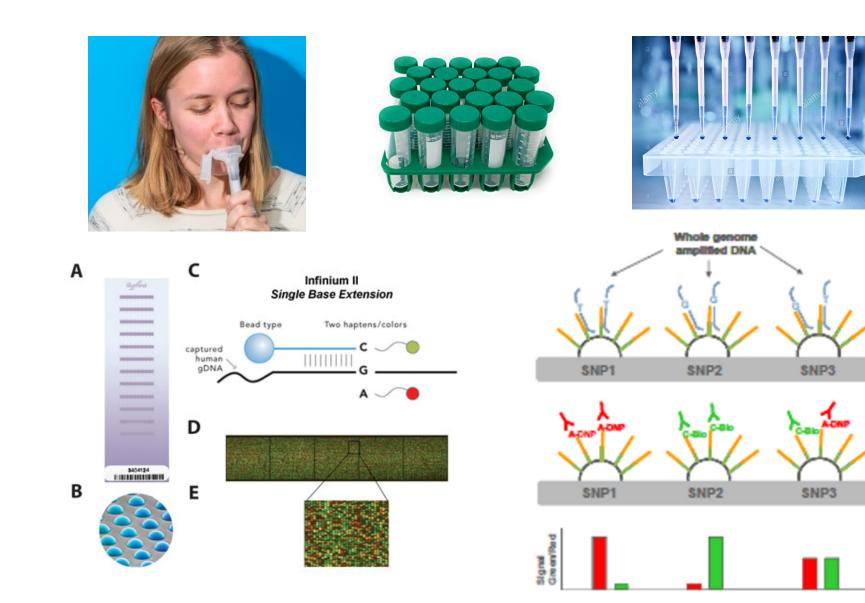
aneusomy

Genotyping

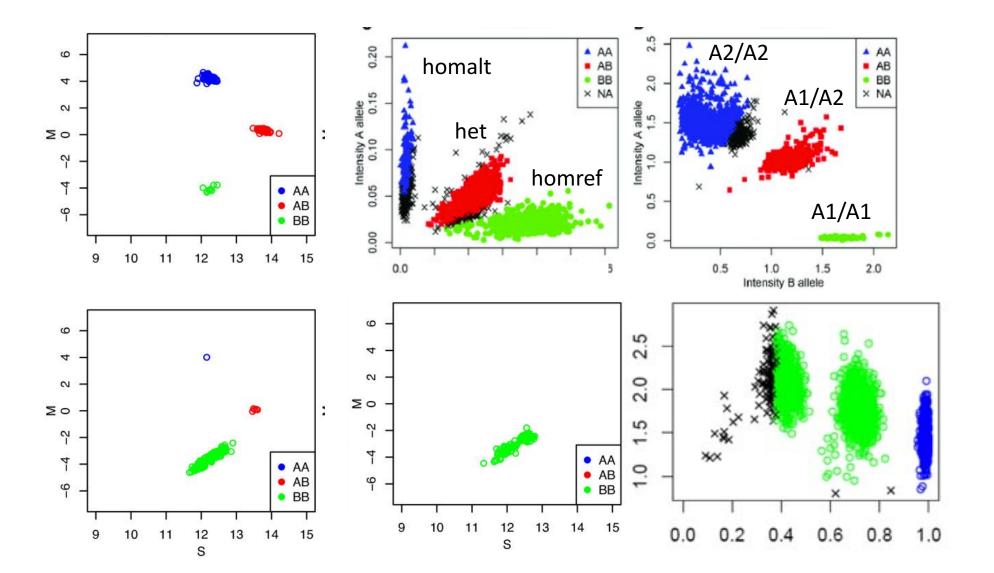
• There are three chip-manufacturers: Illumina, Affymetrix & Perlegen

<u>Affymetrix:</u>

6.0 chip >900,000 SNPs CNV probes 82% coverage CEU HapMap Accuracy 99.90%

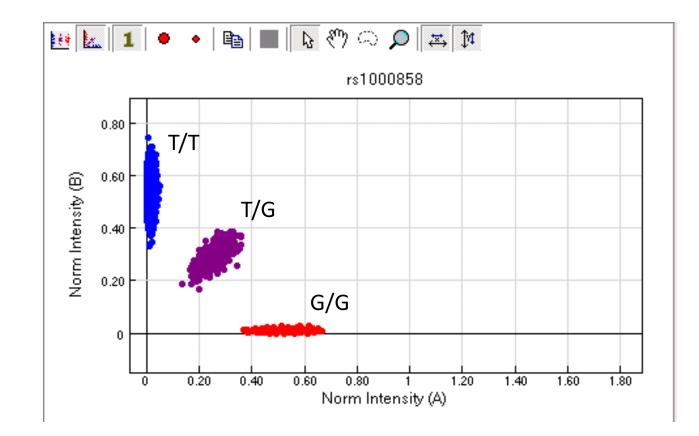

Illumina:

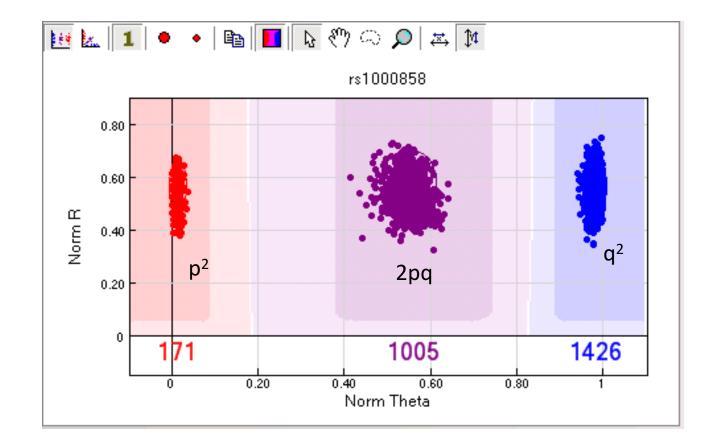
Human1M BeadChip

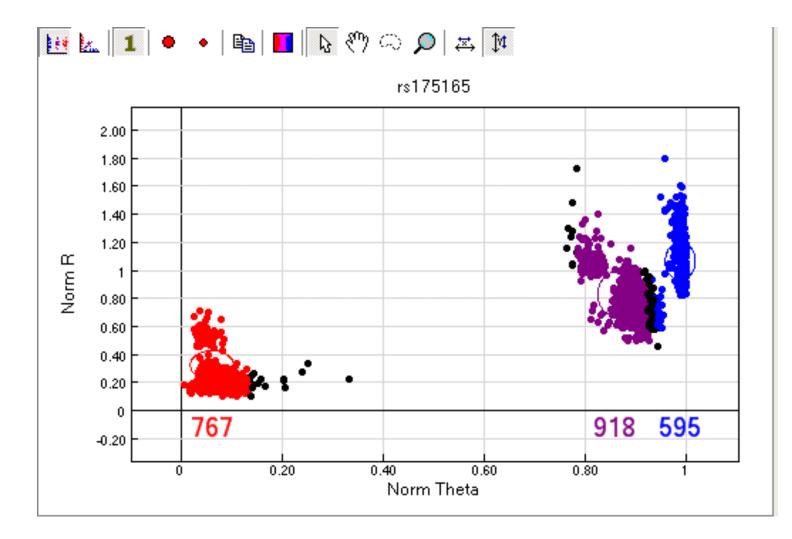

>1 million SNPs CNV probes 95% coverage CEU HapMap Accuracy 99.94%

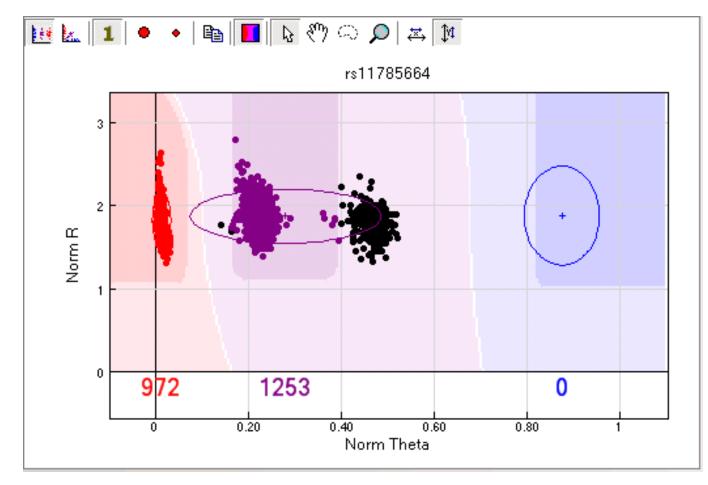
• Intensity measures are produced for both alleles. Genotypes are assigned based on clustering of these two intensities.

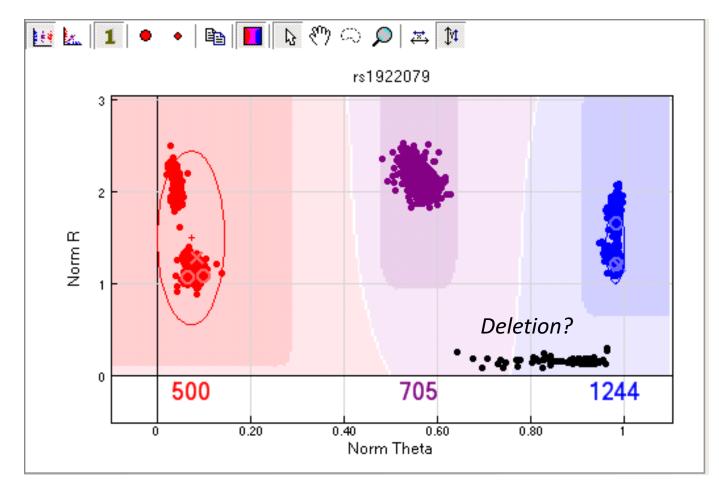
From DNA to data

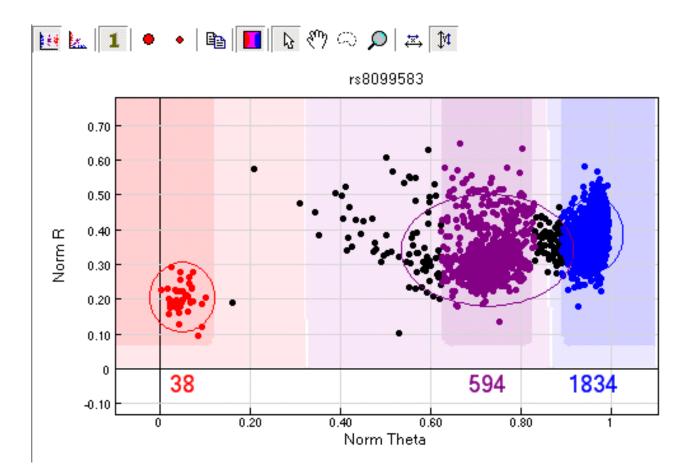

Genotype Intensities


Good SNP (Illumina chip)


Same SNP, normalized intensities


Same SNP, different view


Bad SNP


Another bad SNP

Another bad SNP

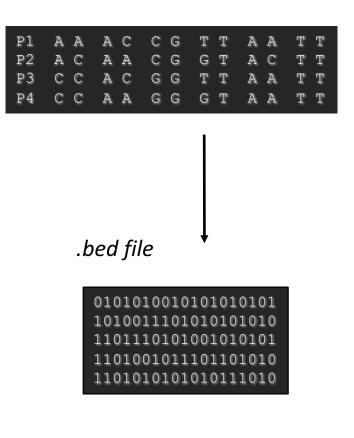
Another bad SNP

PLINK data format of GWAS data

Subjects

.fam file

FID	IID	PID	MID	SEX	AFF					
Taiw_1	PT-VXBB	PT-VXES	PT-VXEG	1	2					
Taiw_1	PT-VXEG	0	0	2	1					
	PT-VXES		0	1	1					
			0	1	1					
		PT-VX4A			2					
	PT-VX72		0	2	1					
	PT-VX6B	0	0	2	1					
		PT-VX73			2					
	PT-VX73			1	1					
Tatw_5	PI-VADN	PT-VX5Z	PT-VAOM	2	2					
FID = f	amily ID)								
IID = Ir	ndividua	al ID								
PID = p	paternal	ID								
•	matern									
AFF = a	AFF = affection status									
CHR = chromosome										
POS = position										
A1 = 0	allele									
A2 = 1	allele									


Genetic variants

.bim file (or .map file)

CHR POS	SNP ID	A1	A2
1 11852412	rs45496998	Α	G
1 11853994	rs116620395	G	C
1 11854457	rs4846051	Α	G
1 11854476	rs1801131	G	Т
1 11854500	rs200137991	Α	C
1 11854823	rs121434296	Α	G
1 11855218	1:11855218	G	Α
1 11855218	rs121434297	G	Α
1 11856328	rs190090719	G	Α
1 11856378	rs1801133	Α	G
1 11857788	rs17421511	Α	G
1 11859046	GSA-rs375817840	Α	G
1 11859636	GSA-rs74683406	Α	G
1 11861223	rs121434295	Т	C
1 11862778	rs17367504	G	Α
1 11863022	seq-rs201618781	Т	C
1 11863038	rs138189536	Α	G
1 11863562	chr1-11863562	Α	G
1 11865250	GSA-rs3753583	Α	G
1 11870279	GSA-rs34994762	G	Α
1 11886226	rs202066883	G	С

Genotype data

.ped file

GWAS QC

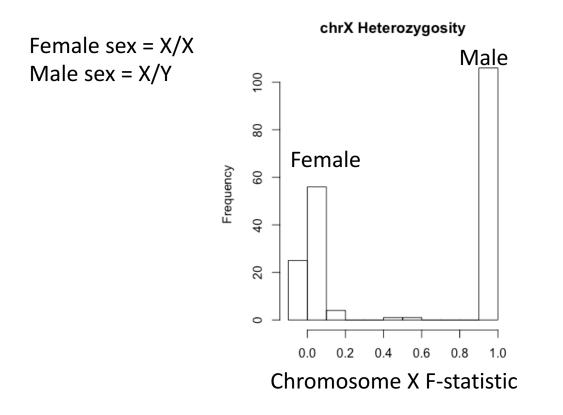
GWAS Quality Control (QC)

- GOAL: Remove bad samples/SNPs, keep good samples/SNPs
- Preliminary strategies (first pass)
 - Poorly genotyped samples / SNP markers
 - Deviations from Hardy-Weinberg
 - Related or duplicated samples (population-based data)
- Follow-up strategies
 - Batch effects
 - Quality differences between datasets
 - Comparison with reference data
 - ...and more

Sample QC

- Poorly genotyped individuals
 - Indications of sample mix-up (sex check or ancestry match)
 - Poor quality DNA (high number of failed SNP calls)
 - Contaminated DNA (unusual levels of heterozygosity)
- Related individuals
 - Family-based and population-based samples require different experimental designs
 - Related individuals can bias test statistics across the whole-genome
 - In family-based association: Mendelian errors used as QC

<u>SNP QC</u>


- Poorly genotyped SNPs
 - Poor primer design / nonspecific DNA binding (high number of failed SNP calls)
 - Poor clustering of genotype intensities (deviation from HWE)
 - Mendelian errors (if family-based data available)
 - Uninformative SNPs (too rare or mono-allelic)
- Follow-up on association signals
 - No QC protocol will eliminate all instances of genotyping error
 - Important to re-analyze original intensity of significant associations (whenever possible)
 - For meta-analysis, examining heterogeneity of SNP effect

Preliminary QC steps

- SAMPLE: Sex-check (chr X heterozygosity)
- SNP: Genotyping Call Rate (genotypes missed in individuals)
- SAMPLE: Sample Call Rate (individuals missing genotypes)
- SNP: Hardy-Weinberg Equilibrium
- SAMPLE: Proportion of Heterozygosity
- SAMPLE/SNP: Mendelian errors

Confirming genetic sex

• Primary question: Is the sample-level data correctly matching the SNP data?

Example .sexcheck file from PLINK (male=1, female=2)

FID	IID	PEDSEX	SNPSEX	STATUS	F	
т304	T30411	1	1	OK	0.9857	
A0641C	06410021C	1	1	OK	0.9841	
т06013	T2601310	2	2	OK	-0.06164	
т01533	T2153321	1	1	OK	0.9841	
т330	Т33021	1	1	OK	0.9867	
т191	T19120	2	2	OK	0.01155	
т329	Т32911	1	1	OK	0.9839	
т07981	T2798111	1	1	OK	0.9822	
A0601C	06010021C	1	1	OK	0.9858	
A1008C	10080011C	1	1	OK	0.9817	
A0880C	08800331C	1	1	OK	0.9818	
T00894	T2089420	2	2	OK	0.01927	
A0701C	07010011C	1	1	OK	0.9807	
T02911	T2291121	1	1	OK	0.9851	
T00588	T2058811	1	2	PROBLEM	-0.3396	
A0805C	08050031C	1	1	OK	0.9821	
т07755	т2775520	2	2	OK	-0.09906	
т03676	т2367611	1	1	OK	0.9845	
т082	T08220	2	1	PROBLEM	0.9833	

SNP genotyping call rate (or "missingness")

- Usually done iteratively
 - Remove SNPs with < 95% call rate
 - Run sample QC
 - Remove SNPs with < 98% call rate
- For case/control data
 - Look at difference in genotyping rate
 - Threshold usually at > 2% call rate difference

Example .lmiss file from PLINK

CHR	SNP	N MISS	N GENO	F MISS
1	rs12565286	6	200	0.03
1	rs12124819	8	200	0.04
1	rs4970383	0	200	0
1	rs13303118	0	200	0
1	rs35940137	0	200	0
1	rs2465136	1	200	0.005
1	rs2488991	0	200	0
1	rs3766192	0	200	0
1	rs10907177	0	200	0

Example .missing file from PLINK

CHR	SNP	F_MISS_A	F_MISS_U	P
1	rs12565286	0.03125	0.03093	1
1	rs12124819	0.05208	0.03093	0.4974
1	rs2465136	0	0.01031	1
1	rs4970357	0	0.02062	0.4974
1	rs11466691	0	0.01031	1
1	rs11466681	0.01042	0.01031	1
1	rs34945898	0.03125	0	0.1211
1	rs715643	0.05208	0.02062	0.2787
1	rs13306651	0.01042	0.03093	0.6211

Sample genotyping call rate

Example .imiss file from PLINK

	FID	IID	MISS_PHENO	N_MISS	N_GENO	F_MISS
	NA20505	NA20505	N	122	100310	0.001216
	NA20504	NA20504	N	1406	100310	0.01402
	NA20506	NA20506	N	204	100310	0.002034
	NA20502	NA20502	N	847	100310	0.008444
	NA20528	NA20528	N	219	100310	0.002183
Missing genotypes	NA20531	NA20531	N	96	100310	0.000957
	NA20534	NA20534	N	338	100310	0.00337
To generate a list genotyping/missingness rate statistics:	NA20535	NA20535	N	182	100310	0.001814
	NA20586	NA20586	N	214	100310	0.002133

plink --file data --missing

This option creates two files:

plink.imiss plink.lmiss

which detail missingness by individual and by SNP (locus), respectively. For individuals, the format is:

FID	Family ID
IID	Individual ID
MISS_PHENO	Missing phenotype? (Y/N)
N_MISS	Number of missing SNPs
N_GENO	Number of non-obligatory missing genotypes
F_MISS	Proportion of missing SNPs

http://zzz.bwh.harvard.edu/plink/summary.shtml#missing

Hardy-Weinberg Equilibrium (HWE)

A genetic variant is said to be in HWE if the genotype frequencies can be predicted by the allele frequencies in the following way:

► If: Example: In C/T SNP terms: f(A1) = p
f(A2) = q p + q = 1p = 0.2C allele freq. = 20%q = 0.8 T allele freq.= 80% Then: p2 = 0.04C/C freq. = 4% ▶ f(A1/A1) = p² 2pq = 0.32C/T freq. = 32% f(A1/A2) = 2pq
p² + 2pq + q² = 1
f(A2/A2) = q² q2 = 0.64T/T freq. = 64%

Testing for deviation from HWE

Deviations from HWE can be caused by:

- Non-random mating (inbreeding, assortative mating, ...)
- Population stratification
- Mutation
- Limited population size
- Random genetic drift
- Gene flow
- Genotyping errors
- Selection (→ may be due to true association!)

So only extreme deviation from HWE ($p < 10^{-6}$) is worrisome.

Example .hardy output in PLINK

CHR	SNP	TEST	A1	A2	GENO	O (HET)	E (HET)	P	
1	rs12565286	ALL	С	G	0/17/170	0.09091	0.08678	1	
1	rs12565286	AFF	С	G	0/6/87	0.06452	0.06243	1	
1	rs12565286	UNAFF	С	G	0/11/83	0.117	0.1102	1	
1	rs12124819	ALL	G	A	0/77/108	0.4162	0.3296	6.919e-05	
1	rs12124819	AFF	G	A	0/41/50	0.4505	0.3491	0.004878	
1	rs12124819	UNAFF	G	A	0/36/58	0.383	0.3096	0.02001	
1	rs4970383	ALL	А	С	10/68/115	0.3523	0.352	1	
1	rs4970383	AFF	A	С	3/36/57	0.375	0.3418	0.5488	
1	rs4970383	UNAFF	A	С	7/32/58	0.3299	0.3618	0.401	
									1

Proportion of heterozygosity (Fhet)

Inbreeding coefficients

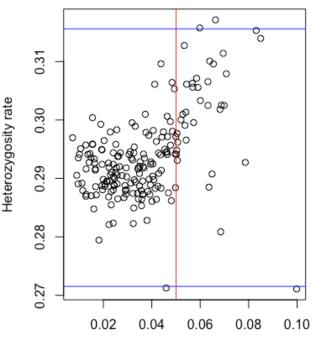
Given a large number of SNPs, in a homogeneous sample, it is possible to calculate inbreeding coefficients (i.e. based on the observed versus expected number of homozygous genotypes).

plink --file mydata --het

which will create the output file:

plink.het

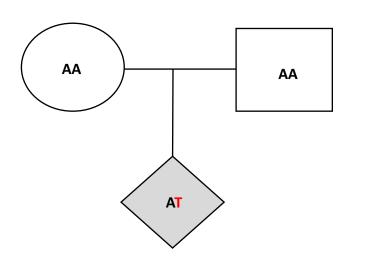
which contains the fields, one row per person in the file:


FID	Family ID
IID	Individual ID
O(HOM)	Observed number of homozygotes
E(HOM)	Expected number of homozygotes
N (NM)	Number of non-missing genotypes
F	F inbreeding coefficient estimate

This analysis will automatically skip haploid markers (male X and Y chromosome markers).

Note With whole genome data, it is probably best to apply this analysis to a subset that are pruned to be in approximate linkage equilibrium, say on the order of 50,000 autosomal SNPs. Use the --indep-pairwise and --indep commands to achieve this, described here.

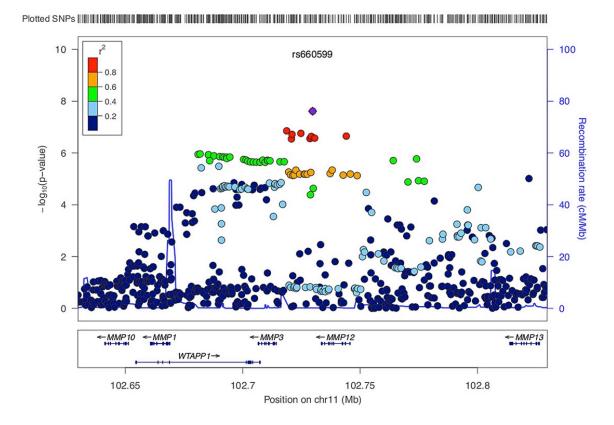
Note The estimate of F can sometimes be negative. Often this will just reflect random sampling error, but a result that is strongly negative (i.e. an individual has *fewer* homozygotes than one would expect by chance at the genome-wide level) can reflect other factors, e.g. sample contamination events perhaps.


http://zzz.bwh.harvard.edu/plink/ibdibs.shtml#inbreeding

Individual missingness

Mendelian errors

- Requires parent-offspring data
- Similar to genotyping rate, can be examined at sample and SNP level
- High sample-level mendel error rate
 - Parental uncertainty
- High SNP-level mendel error rate
 - Poor genotype quality



Mende	Mendel errors										
mend	mendel ['summaries-only']										
mend	le1-duos										
mend	lel-multigen										
plink{	mendel scans the dataset for Mendel errors, writing a set of reports to p1ink{.mendel,.imendel,.fmendel,.Imendel}. Haploid and mitochondrial data are ignored. The errors are classified as follows, where '1' refers to the A1 (usually minor) allele and '2' refers to A2:										
Code	e Pat. genotype	Mat. genotype	Child genotype	Samples implicated							
1	11	11	12	all							
2	22	22	12	all							
3	22	11/12/missing	11	father, child							
4	11/12/missing	22	11	mother, child							
5	22	22	11	child							
6	11	12/22/missing	22	father, child							
7	12/22/missing	11	22	mother, child							
8	11	11	22	child							
9	(Xchr male)	11	22	mother, child							
10	(Xchr male)	22	11	mother, child							

https://www.cog-genomics.org/plink/1.9/basic_stats#mendel

Linkage disequilibrium (LD) allows us to be more robust with our QC protocols

- Properties of linkage disequilibrium reduce the loss of signal sensitivity when removing SNPs
- Strict multiple testing correction requires very large samples - no single sample will drive a signal
- LD <u>must</u> be taken into account when examining genetic relatedness, population stratification, and interpreting association

Breakout session (5 min)

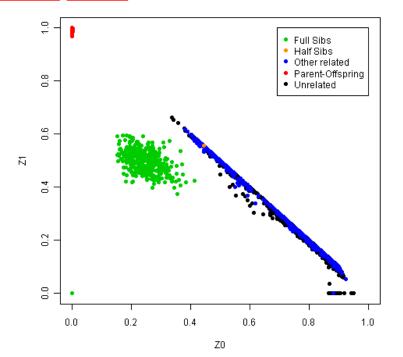
- Breakout into small groups
- Introduce yourself to everyone
- Person with earliest letter in their FIRST name will be the note taker
 - E.g. <u>Aaron is the note taker, not Zenia</u>
 - E.g. <u>Aaron is the note taker, not Abel</u>
- Ask any questions you have:
 - "I didn't understand what meant"
 - "I'm confused by the sample/SNP difference in heterzygosity"
- Note takers relay unanswered questions from the breakout session

Lecture Format

- Part 1 (~40 minutes)
 - Goals of GWAS
 - What does the data look like?
 - GWAS Quality Control (QC)
 - 5 min breakout session
- Part 2 (~40 minutes)
 - Relatedness checking
 - Population stratification
 - Principal components analysis (PCA)
 - Imputation
 - 5 min breakout session
- Part 3 (~40 minutes)
 - Association testing
 - Meta-analysis
 - Polygenic Scoring
 - 5 min breakout session
- Preparation for module 3 / additional reading / lingering questions

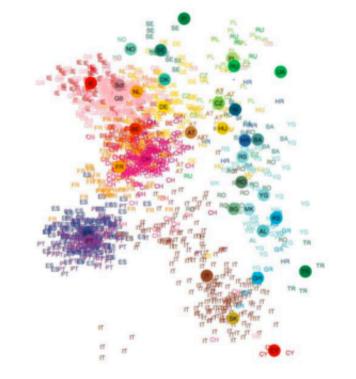
Genetic Relatedness

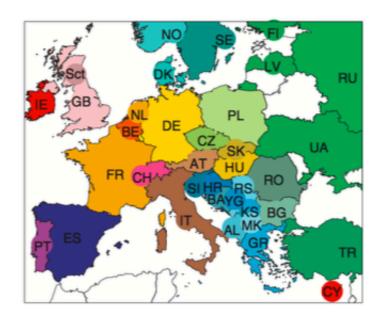
Genetic relatedness using Identity-By-Descent (IBD) calculation


- Question: How much does a pair of samples share 0, 1, or both alleles?
- Identical twins: Shares both alleles across entire genome (barring mutation events)
- Requires using LD-pruned SNPs for accurate estimates
 - Want each SNP to be an "independent" marker
- Used to both "confirm" and "filter" related individuals

Checking genotype relatedness across samples

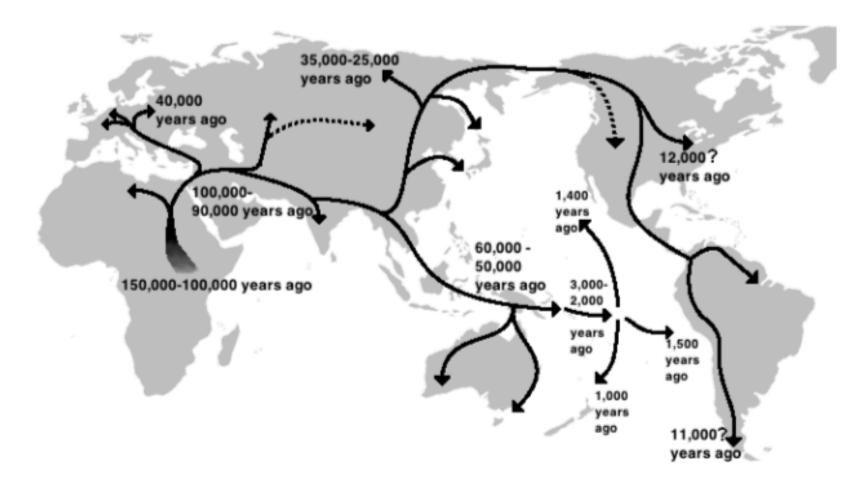
Example of .genome file in PLINK


-														
	FID1	IID1	FID2	IID2	RT	EZ	zo	Z1	Z2	PI_HAT	PHE	DST	PPC	RATIO
	NA20505	NA20505	NA20506	NA20506	UN	NA	0.9872	0.0000	0.0128	0.0128	-1	0.771435	0.3446	1.9712
	NA20505	NA20505	NA20502	NA20502	UN	NA	0.9888	0.0096	0.0016	0.0064	-1	0.770233	0.3950	1.9808
	NA20505	NA20505	NA20528	NA20528	UN	NA	0.9733	0.0267	0.0000	0.0133	-1	0.770068	0.2922	1.9606
	NA20505	NA20505	NA20531	NA20531	UN	NA	0.9789	0.0205	0.0006	0.0109	-1	0.770976	0.7407	2.0479
	NA20505	NA20505	NA20534	NA20534	UN	NA	0.9602	0.0398	0.0000	0.0199	-1	0.772123	0.3046	1.9631
	NA20505	NA20505	NA20535	NA20535	UN	NA	0.9650	0.0350	0.0000	0.0175	-1	0.771054	0.6510	2.0285
	NA20505	NA20505	NA20586	NA20586	UN	NA	0.9728	0.0272	0.0000	0.0136	-1	0.770687	0.4281	1.9869
	NA20505	NA20505	NA20756	NA20756	UN	NA	0.9675	0.0325	0.0000	0.0163	-1	0.770762	0.6902	2.0365
	NA20505	NA20505	NA20760	NA20760	UN	NA	0.9344	0.0656	0.0000	0.0328	0	0.770978	0.8856	2.0904


	Probability of Sharing IBD Alleles								
Relative Pair	π_0	π1	π_2						
MZ Twins	0	0	1						
Full Sibs	0.25	0.50	0.25						
Parent-Offspring	0	1	0						
First Cousin	0.75	0.25	0						
Grandparent- Grandchild	0.50	0.50	0						
Half-Sibs	0.50	0.50	0						
Avuncular	0.50	0.50	0						

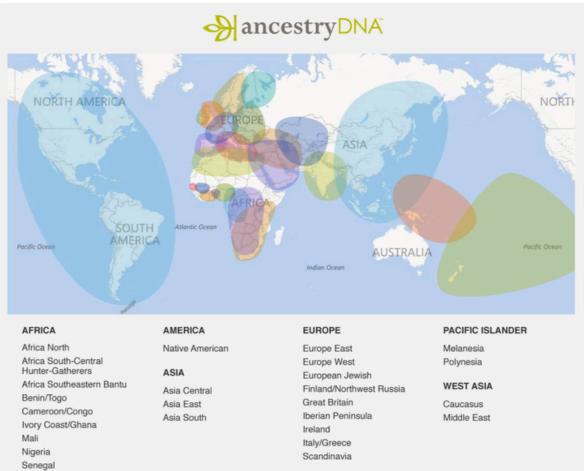
Using genetic relatedness estimates

- Confirm unrelated or "population-based" sample ascertainment
 - Filter out related samples (pi-hat > 0.2 often used)
 - "Cryptic relatedness" related individuals identified in "unrelated" sample
- Confirm family structure (pedigree)
 - Ensure parent-child and sibling relationship
- Watch out for distinct ancestries
 - Can skew IBD estimates and incorrectly identify recent relatedness
 - PCrelate more robust to these patterns <u>https://rdrr.io/bioc/GENESIS/man/pcrelate.html</u>



Population Stratification

Abdel Abdellaoui Department of Psychiatry, Amsterdam UMC, University of Amsterdam



E-mail: a.abdellaoui@amc.nl

Largest patterns of genetic variation = ancestry

88% of GWAS participants is of European descent

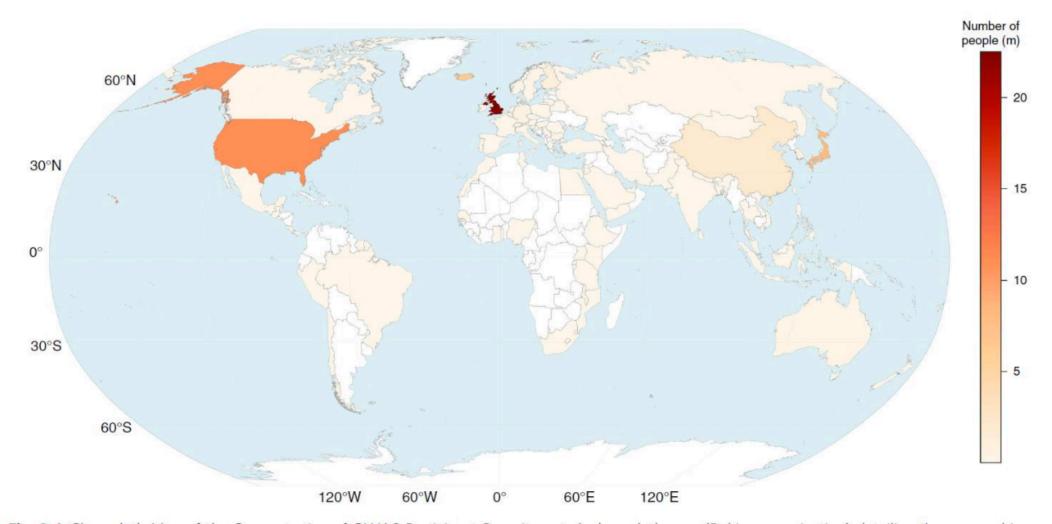


Fig. 3 A Choropleth Map of the Concentration of GWAS Participant Recruitment. A choropleth map (Robinson projection) detailing the geographic recruitment of GWAS participants. Source: NHGRI-EBI GWAS Catalog, Natural Earth (v4.0.0) and the CIA World Factbook. Replication material provides a per-capita population adjusted version

Population stratification = a systematic difference in allele frequencies between (sub)populations due to different ancestry.

Can cause false positives if the trait values also differ between the (sub)populations.

Sample 1 Americans: $\chi^2=0$, $p=1$			Sample 2 Chinese: $\chi^2=0$, $p=1$					
	Use of chopsticks				Use of chopsticks			
	Yes	No	Total		Yes	No	Total	
Allele 1	320	320	640	Allele 1	320	20	340	
Allele 2	80	80	160	Allele 2	320	20	340	
Total	400	400	800	Total	640	40	680	

Sample 1 Americans: $\chi^2=0$, $p=1$				Sample 2 Chinese: $\chi^2=0$, $p=1$						
	Use of chopsticks					Use of cl				
	Yes	No	Total			Yes	No	Total		
Allele 1	320	320	640		Allele 1	320	20	340		
Allele 2	80	80	160		Allele 2	320	20	340		
Total	400	400	800		Total	640	40	680		
			There is a c frequency of between A Chinese	diffe	erence					

Sample 1 Americans: $\chi^2=0$, $p=1$				Sample 2 Chinese: $\chi^2=0$, $p=1$						
	Use of chopsticks				Use of c		nopsticks			
	Yes	No	Total			Yes	No	Total		
Allele 1	320	320	640		Allele 1	320	20	340		
Allele 2	80	80	160		Allele 2	320	20	340		
Total	400	400	800		Total	640	40	680		
Total 400 400 800 Total 640 40 680 There is a clear difference between Americans and Chinese in proportion of "cases" and "controls"										

Sample 1 Americans: χ ² =0, p=1			Sample 2 Chinese: $\chi^2=0$, $p=1$					
	Use of chopsticks				Use of chopsticks			
	Yes	No	Total		Yes	No	Total	
Allele 1	320	320	640	Allele 1	320	20	340	
Allele 2	80	80	160	Allele 2	320	20	340	
Total	400	400	800	Total	640	40	680	

		1
C		
	-	
11		

Sample 1 + 2 = Americans + Chinese:
$y^2 = 34.2$, $p = 4.9 \times 10^{-9}$

	Use of ch	opsticks	
	Yes	No	Total
Allele 1	640	340	980
Allele 2	400	100	500
Total	1040	440	1480

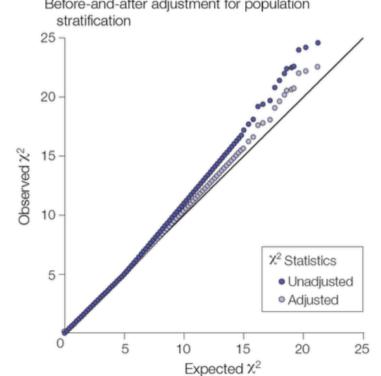
Dealing with population stratification

Ways to deal with population stratification:

- Genomic Control (GC)
- Principal Component Analysis
- Within Family Association
- Mixed Linear Modeling

genetics

Variance component model to account for sample structure in genome-wide association studies


Hyun Min Kang^{1,2,8}, Jae Hoon Sul^{3,8}, Susan K Service⁴, Noah A Zaitlen⁵, Sit-yee Kong⁴, Nelson B Freimer⁴, Chiara Sabatti⁶ & Eleazar Eskin^{3,7}

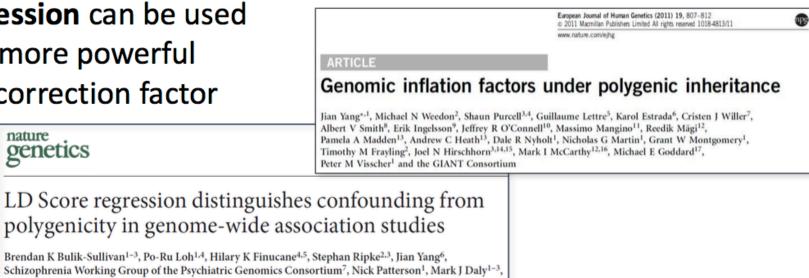
genetics

Advantages and pitfalls in the application of mixed-model association methods

Jian Yang^{1,2,8}, Noah A Zaitlen^{3,8}, Michael E Goddard^{4,9}, Peter M Visscher^{1,2,9} & Alkes L Price^{5–7,9}

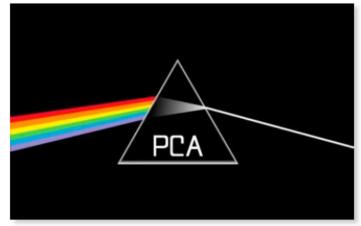
- Population stratification can result in higher test statistics
 (= lower *p*-values)
- The genomic control method estimates the factor with which the test statistics are inflated due to population stratification $\rightarrow \lambda$
- Dividing by λ cancels this effect out for all SNPs:
 - Unadjusted: λχ²
 - Adjusted: χ²

Genomic Control (GC)


- λ is measured by dividing the median of the distribution of the chisquare statistics from the actual tests by the median of the chi-square distribution under the null.
- Then, GC applies its correction by dividing the actual association test chisquare statistic results by this λ , thus making these results appropriately more pessimistic.
- GC is too conservative if the trait is highly polygenic (i.e. the median test statistic does not represent the null distribution).
- LD Score regression can be used to estimate a more powerful and accurate correction factor

nature

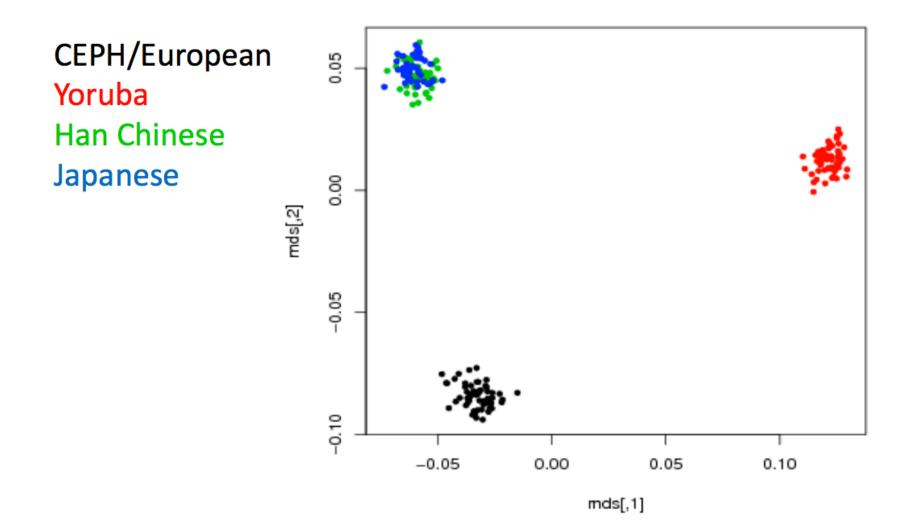
genetics


Alkes L Price^{1,4,8} & Benjamin M Neale¹⁻³

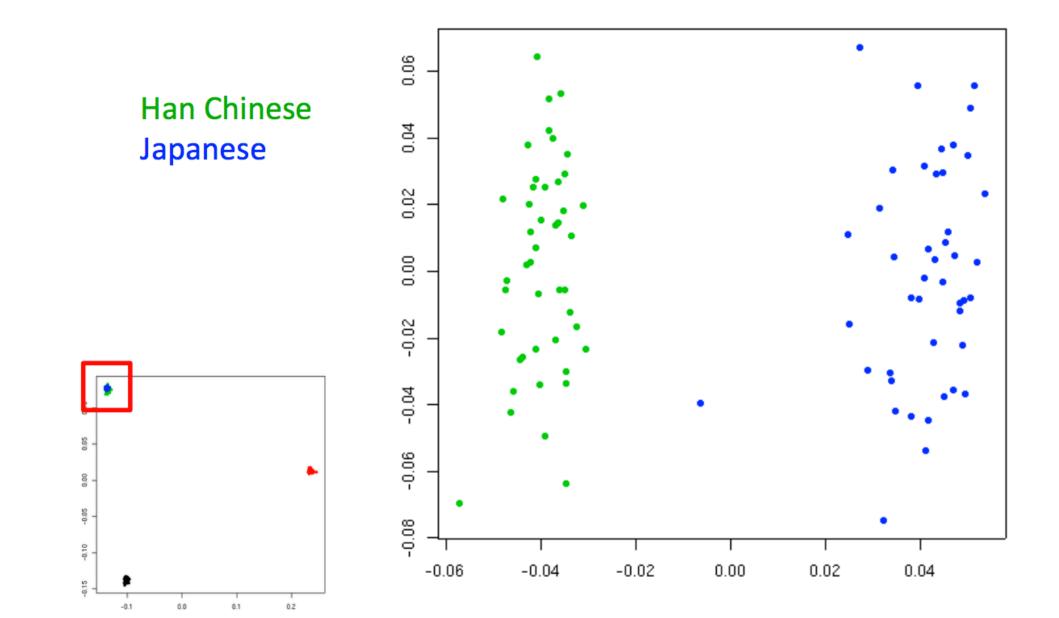
than GC.

Principal Component Analysis (PCA)

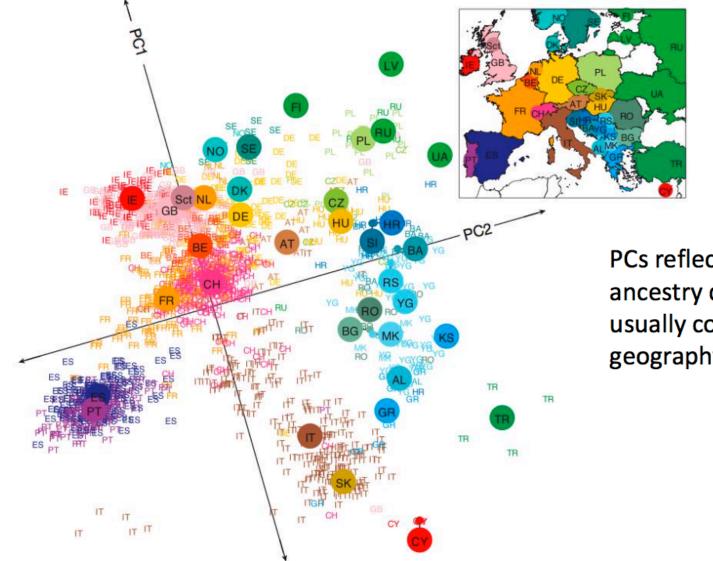
- PCA is a statistical method for exploring large number of measurements (e.g., SNPs) by reducing the measurements to fewer principal components (PCs) that explain the main patterns of variation:
 - The first PC is the mathematical combination of measurements that accounts for the largest amount of variability in the data.
 - The second PC (uncorrelated with the first) accounts for the second largest amount of variability.
 - Etc...



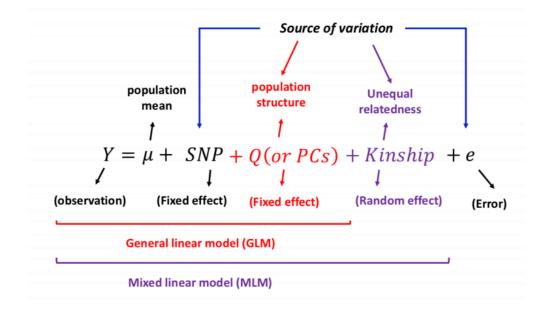
Principal components analysis corrects for stratification in genome-wide association studies


Alkes L Price^{1,2}, Nick J Patterson², Robert M Plenge^{2,3}, Michael E Weinblatt³, Nancy A Shadick³ & David Reich^{1,2}

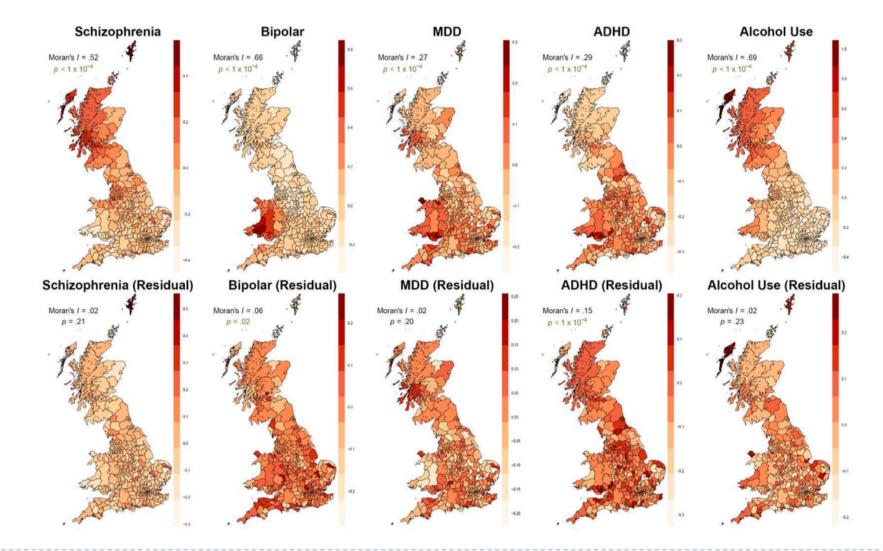
Population stratification—allele frequency differences between cases and controls due to systematic ancestry differences—can cause spurious associations in disease studies. We describe a method that enables explicit detection and correction of population stratification on a genome-wide scale. Our method uses principal components analysis to explicitly model ancestry differences between cases and controls. The resulting correction is specific to a candidate marker's variation in frequency across ancestral populations, minimizing spurious associations while maximizing power to detect true associations. Our simple, efficient approach can easily be applied to disease studies with hundreds of thousands of markers.


Principal Component Analysis (PCA)

Principal Component Analysis (PCA)


Fine-scale genetic variation reflects geography

PCs reflecting ancestry differences usually correlate with geography.


Using PCs in GWAS studies

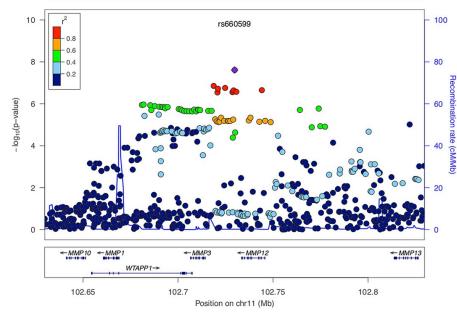
- Include as covariates in a regression model
- PCs that associate to phenotype very important to include
- Logistic regression sensitive to inclusion of many PCs
- Linear regression more robust
- Mixed linear models can replace PCs with genetic relatedness (GRM) matrix
 - Adding PCs as well still seems to help..

Ancestry differences in Great Britain

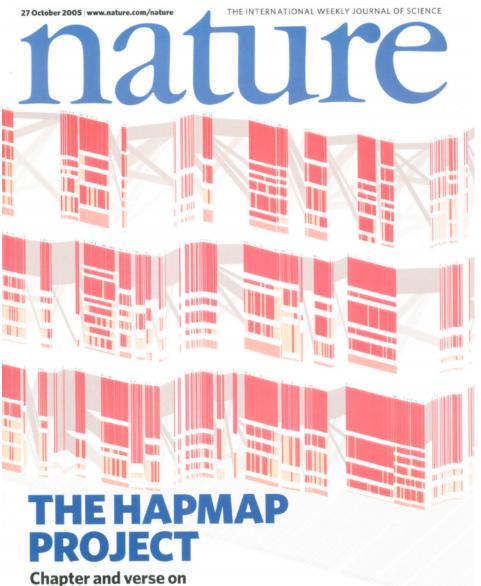
Polygenic scores, before and after regressing out 100 PCs

Genetic Consequences of Social Stratification in Great Britain (Abdellaoui et al, 2018)

Phasing and Imputation


...but I want to analyze more SNPs!!!!

Impute: "represent as being done, caused, or **possessed**"


Main goal: Using local Linkage Disequilibrium (LD) patterns to infer the genotype of a SNP not on your array

Main process: Map your GWAS array SNPs to whole-genome sequence data (i.e. "reference panels") to impute SNPs not on your array

Reference panels / Haplotypes

Chapter and verse on human genetic variation

HapMap (haplotype map) Project

270 whole-genome sequenced samples:

30 parent-offspring trios of the Yoruba from Ibadan, Nigeria (YRI)30 trios of Utah residents with European ancestry (CEU)45 individuals from Beijing, China (CHB)45 individuals from Tokyo, Japan (JPT)

The International HapMap Consortium (2005). A haplotype map of the human genome. *Nature*.

Reference panels / Haplotypes

1000 Genomes Project

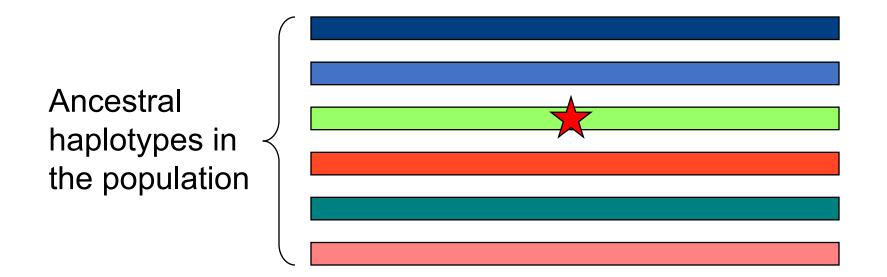
Phase 1: 1,092 individuals from 14 populations..

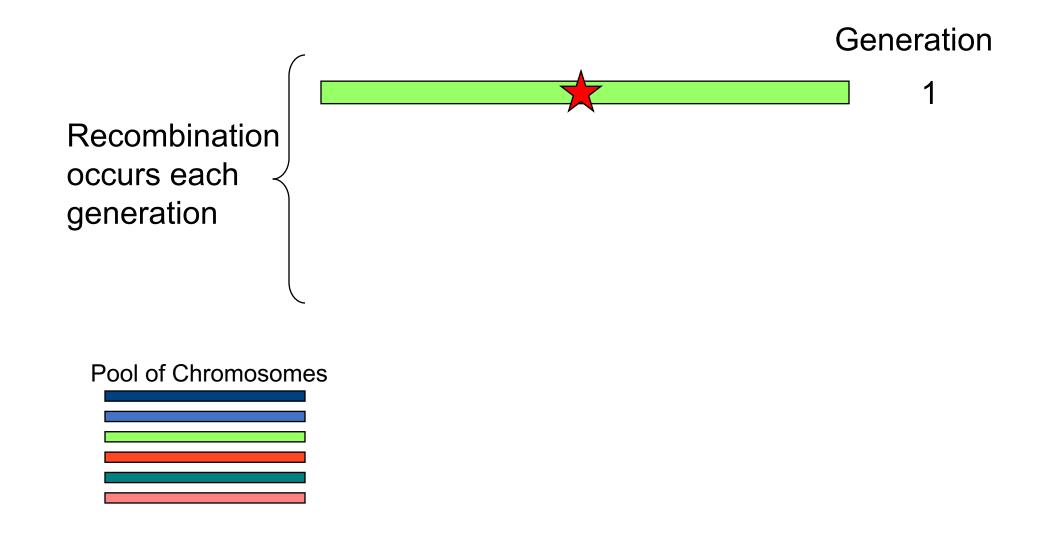
Phase 3: 2,504 individuals from 26 populations (~500 samples form each 5 continental ancestry groups, with ~5 populations for each group)

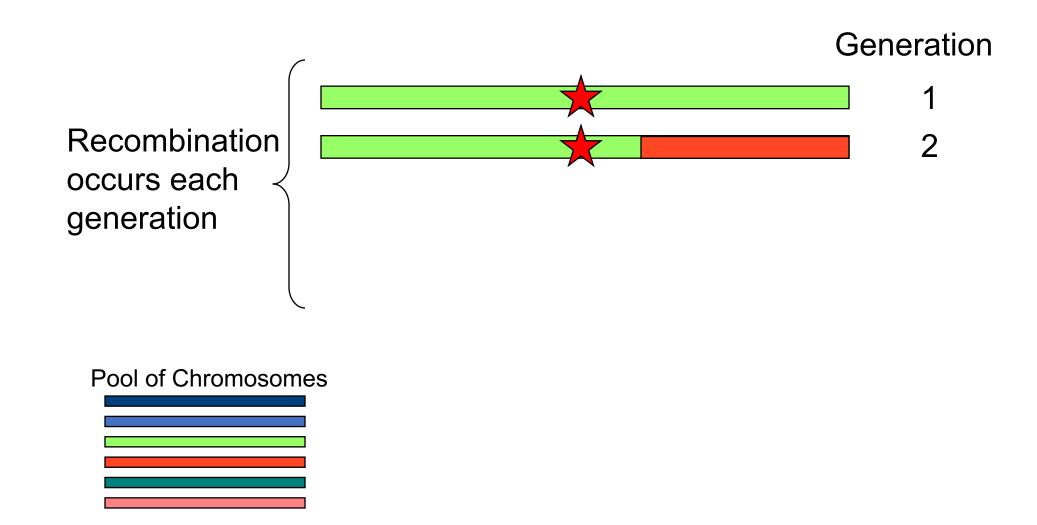
Population		Code	Population Color	Continental Group Color	Analysis Panel	Phase 1	Phase 3
African ancestry			COIDI	croup color	Tanci		
Esan in Nigeria	Esan	ESN			AFB		99
Gambian in Western Division, Mandinka	Gambian	GWD			AFR		113
Luhva in Webuve, Kenva	Luhva	LWK			AFR	97	99
Mende in Sierra Leone	Mende	MSL			AFR		85
Yoruba in Ibadan. Nigeria	Yoruba	YBI			AFR	88	108
African Caribbean in Barbados	Barbadian	ACB			AFR/AMR		96
People with African Ancestry in Southwest USA	African-American SW	ASW			AFR/AMR	61	61
Americas							
Colombians in Medellin, Colombia	Colombian	CLM			AMR	60	94
People with Mexican Ancestry in Los Angeles, CA, USA	Mexican-American	MXL			AMR	66	64
Peruvians in Lima, Peru	Peruvian	PEL			AMR		85
Puerto Ricans in Puerto Rico	Puerto Rican	PUR			AMR	55	104
East Asian ancestry							
Chinese Dai in Xishuangbanna, China	Dai Chinese	CDX			EAS		93
Han Chinese in Beijing, China	Han Chinese	CHB			EAS	97	103
Southern Han Chinese	Southern Han Chinese	CHS			EAS	100	105
Japanese in Tokyo, Japan	Japanese	JPT			EAS	89	104
Kinh in Ho Chi Minh City, Vietnam	Kinh Vietnamese	KHV			EAS		99
European ancestry							
Utah residents (CEPH) with Northern and Western European ancestry	CEPH	CEU			EUR	85	99
British in England and Scotland	British	GBR			EUR	89	91
Finnish in Finland	Finnish	FIN			EUR	93	99
Iberian Populations in Spain	Spanish	IBS			EUR	14	107
Toscani in Italia	Tuscan	TSI			EUR	98	107
South Asian ancestry							
Bengali in Bangladesh	Bengali	BEB			SAS		86
Gujarati Indians in Houston, TX, USA	Gujarati	GIH			SAS		103
Indian Telugu in the UK	Telugu	ITU			SAS		102
Punjabi in Lahore, Pakistan	Punjabi	PJL			SAS		96
Sri Lankan Tamil in the UK	Tamil	STU			SAS		102
Total						1092	2504

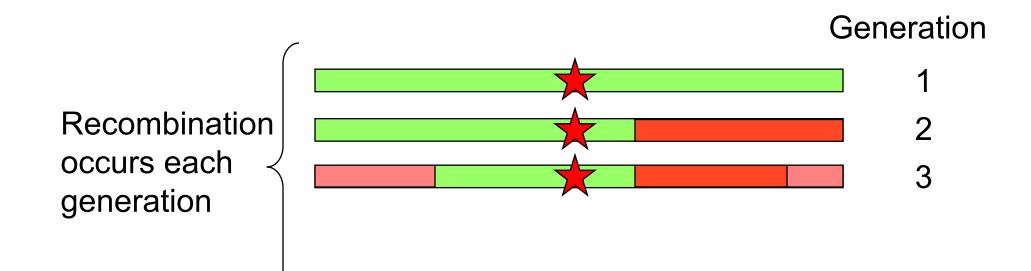
The 1000 Genomes Project Consortium (2012). An integrated map of genetic variation from 1,092 human genomes. *Nature*. The 1000 Genomes Project Consortium (2015). A global reference for human genetic variation. *Nature*.

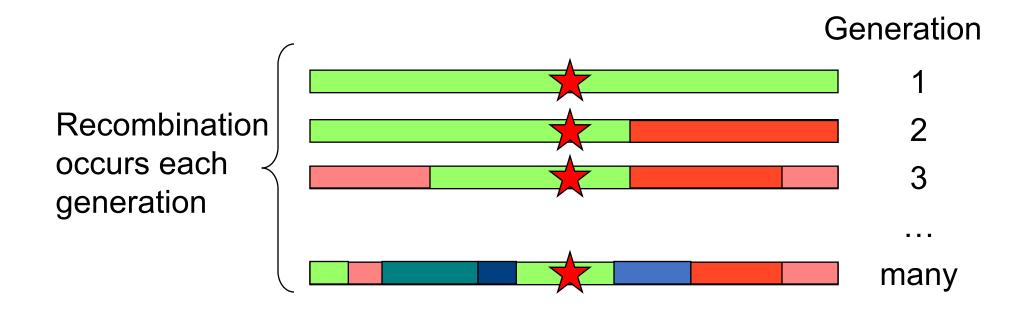
Reference panels / Haplotypes

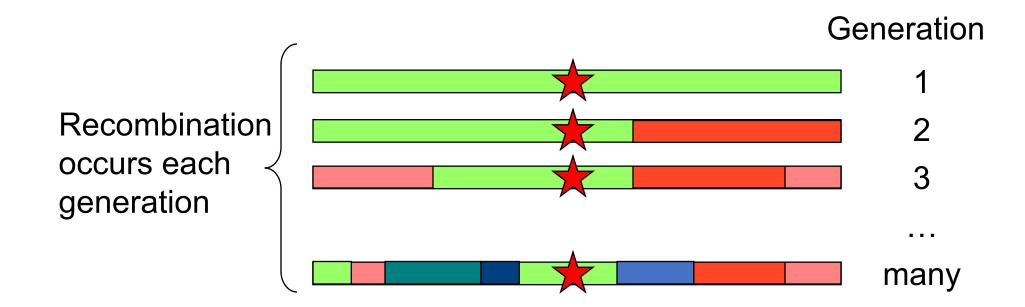

The Haplotype Reference Consortium (HRC)


A reference panel of 64,976 haplotypes for genotype imputation


The Haplotype Reference Consortium (2016). A reference panel of 64,976 haplotypes for genotype imputation. *Nature Genetics*.


Ancestral haplotypes in the population


Novel variant arises

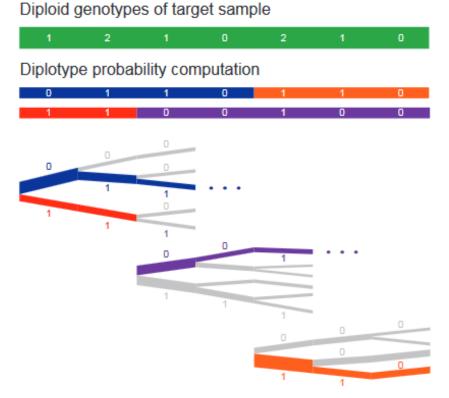



Pool of Chromosomes

Pool of Chromosomes

Pool of Chromosomes

Chromosomes are a patchwork of the ancestral haplotypes, but local LD still persists


What is phasing

- In this context it is really Haplotype Estimation
- We take genotype data and try to reconstruct the haplotypes
 - Can use reference data to improve this estimation

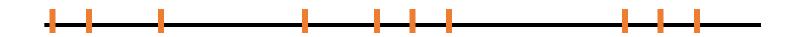
Heterozygous genotypes at 3 sites AC TG AT The 4 possible consistent pairs of haplotypes <u>ATT ATA AGT AGA</u> CGA CGT CTA CTT

Phasing in Eagle

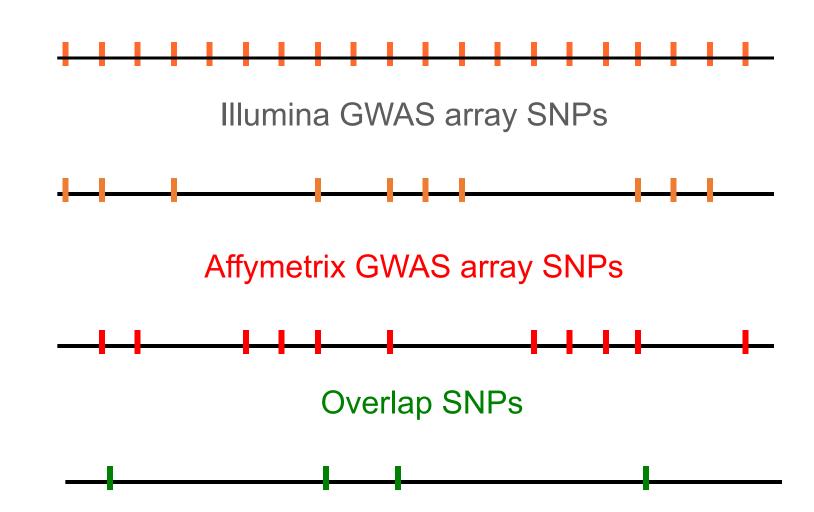
- Input a target sample and a library of reference haplotypes
- Selection of conditioning haplotypes.
- Generation of HapHedge data structure.
- Exploration of the diplotype space.

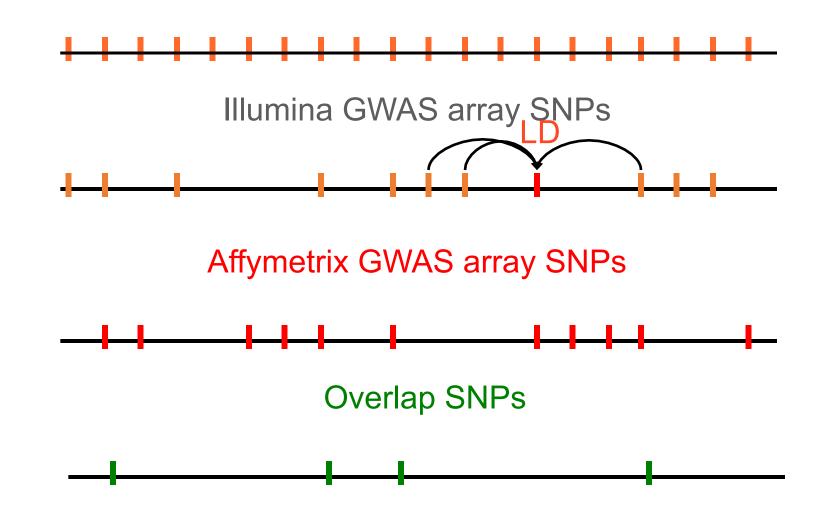
All HapMap/1KG Whole genome sequence SNPs

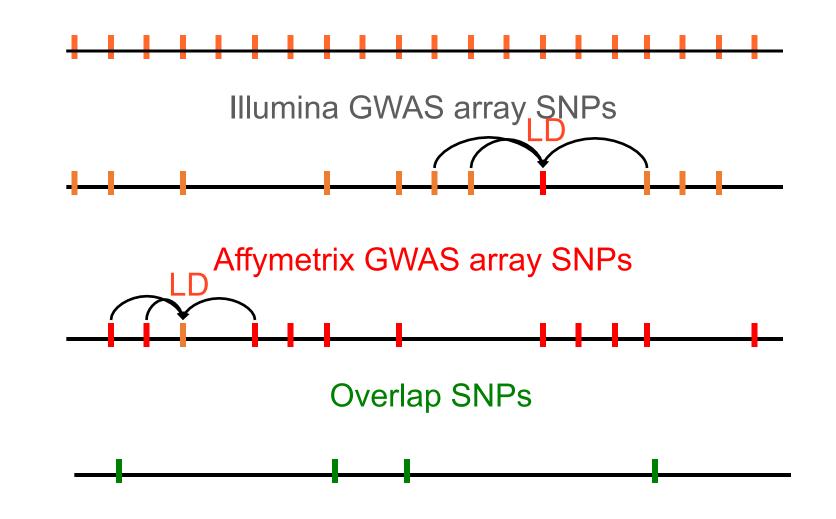
All HapMap/1KG Whole genome sequence SNPs

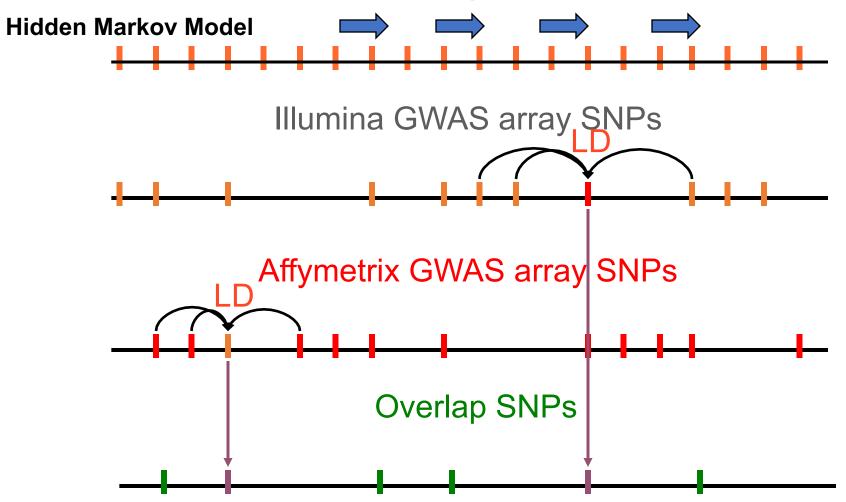

Illumina GWAS array SNPs

All HapMap/1KG Whole genome sequence SNPs




Illumina GWAS array SNPs




Affymetrix GWAS array SNPs

Imputation output and performance

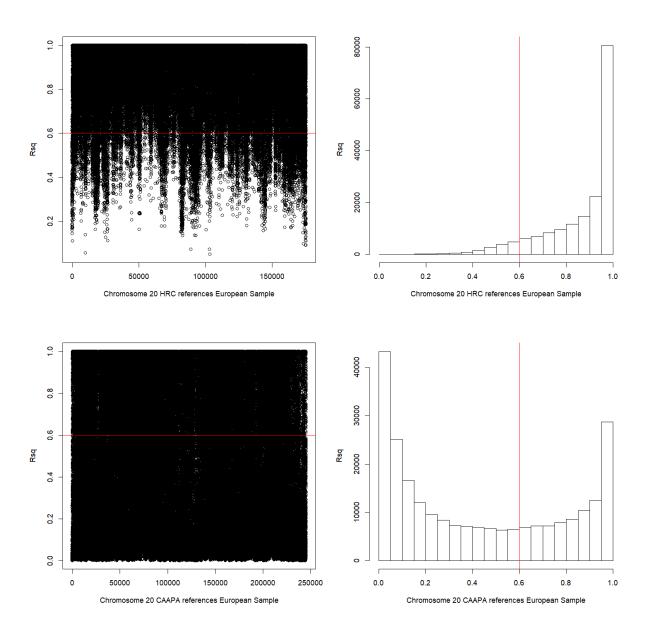
SNP INFO file:

Main Metric (Rsq)

SNP	A11	A12	Freq1	MAF	AvgCall	Rsq	Genotyped	1	LooRsq	EmpR	EmpRsq	Dose1	Dose2
1:10583	G	A	0.79288	0.20712	0.79288	-0.0000) -		-	-	-	-	-
1:10611	С	G	0.97889	0.02111	0.97889	0.00000			-	-	-	-	
1:13302	С	Т	0.86280	0.13720	0.86280	-0.0000) -		-	-	-	-	-
1:13327	G	С	0.96042	0.03958	0.96042	-0.0000) -		-	-	-	-	-
1:95207182	Т	С	0.99547	0.00453	0.99547	0.10108			-	-	-	-	
1:95207382	Т	Т	1.00000	0.00000	1.00000	0.00000			-	-	-	-	
1:95207442	С	Т	0.62754	0.37246	0.99999	1.00507	Genotyped	1	0.98810	0.99822	0.99645	0.99484	0.00421
1:95207524	G	A	0.78061	0.21939	1.00000	1.00511	Genotyped	1	1.00059	1.00000	1.00000	0.99924	0.00083
1:95207532:TG_T	R	D	0.78620	0.21380	0.99441	0.97729			-	-	-	-	
1:95207558	С	Т	0.99399	0.00601	0.99399	0.05165			-	-	-	-	
1:95207633	А	С	0.93366	0.06634	0.99998	1.00482	Genotyped	l	0.94847	0.99901	0.99802	0.99621	0.00372
1:95207846	G	Т	0.98937	0.01063	0.98942	0.31316			-	-	-	-	

Imputation quality evaluation

Minimac hides each of the genotyped SNPs in turn and then calculates 3 statistics:


- IooRSQ this is the estimated rsq for that SNP (as if SNP weren't typed).
- empR this is the empirical correlation between true and imputed genotypes for the SNP. If this is negative, the SNP alleles are probably flipped.
- empRSQ this is the actual R2 value, comparing imputed and true genotypes.

These statistics can be found in the *.info file

Be aware that, unfortunately, imputation quality statistics are not directly comparable between different imputation programs (MaCH/minimac vs. Impute vs. Beagle etc.).

Imputation output and performance

Good imputation

Bad imputation

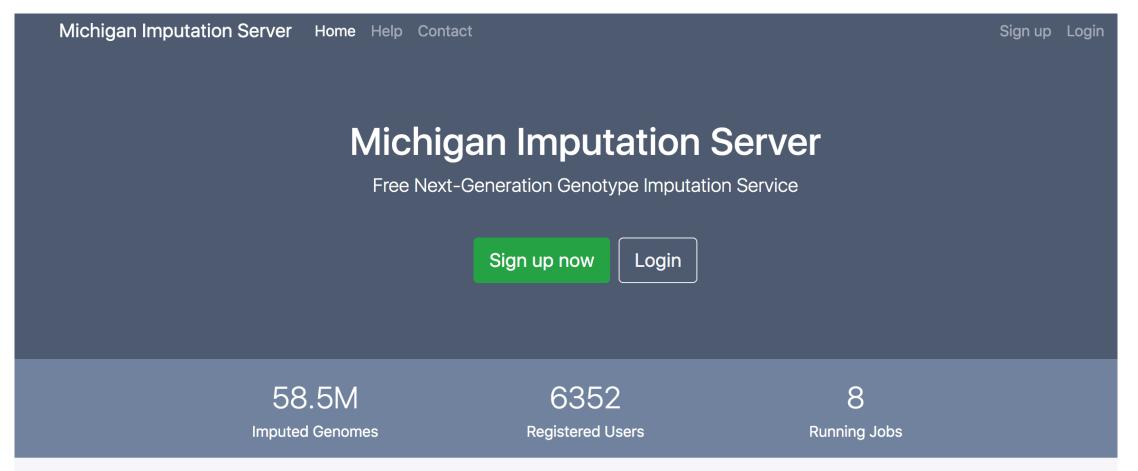
Phasing/Imputation software

- Imputation programs
 - IMPUTE2

https://mathgen.stats.ox.ac.uk/impute/impute_v2.html

- MaCH / minimac http://genome.sph.umich.edu/wiki/Minimac
- Also need to Phase data to distinguish haplotypes
 - Shapeit

www.shapeit.fr


Beagle
<u>http://faculty.washington.edu/browning/beagle/beagle.html</u>
Eagle / Eagle2

https://data.broadinstitute.org/alkesgroup/Eagle/

• Overall a very computationally expensive process

Imputation Services - Michigan

https://imputationserver.sph.umich.edu/index.html#!

Imputation Services - Sanger

https://imputation.sanger.ac.uk/

Sanger Imputation Service Beta

Home About Instructions - Resources Status

Sanger Imputation Service

This is a free genotype **imputation** and **phasing** service provided by the Wellcome Sanger Institute. You can upload GWAS data in VCF or 23andMe format and receive imputed and phased genomes back. Click here to learn more and follow us on Twitter.

Before you start

Be sure to read through the instructions.

You will need to set up a free account with Globus and have Globus Connect running at your institute or on your computer to transfer files to and from the service.

Ready to start?

If you are ready to upload your data, please fill in the details below to **register an imputation and/or phasing job**. If you need more information, see the about page. See also our Privacy and Security statement.

Full name	
Organisation	
Email address	
What is this 😧	
Globus user identity	

News

✓ @sangerimpute

30/1/2017 Support for chromosome X has been added to all pipelines. PBWT has been updated to increase imputation accuracy

of dosages and fix some bugs. See ChangeLog.

31/10/2016

New African Genome Resources panel with 9,912 haplotypes (6,230 African) is now available.

11/04/2016

Thanks to EAGLE2, we can now return **phased data**. The HRC panel has been updated to r1.1 to fix a known issue. See ChangeLog for more details.

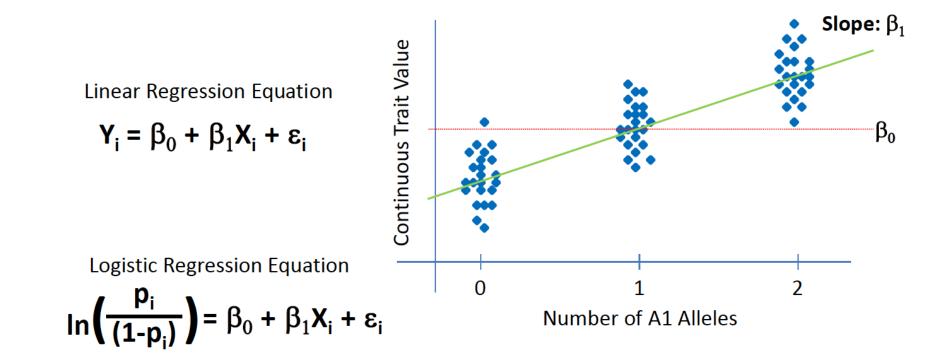
Breakout session (5 min)

- Breakout into small groups
- Introduce yourself to everyone
- Person with LATEST letter in their FIRST name will be the note taker
 - E.g. <u>Zenia is the note taker, not Aaron</u>
 - E.g. <u>Ab</u>el is the note taker, not <u>Aa</u>ron
- Ask any questions you have:
 - "I didn't understand what meant"
 - "I'm confused by the concept of phasing"
- Note takers relay unanswered questions from the breakout session

Lecture Format

- Part 1 (~40 minutes)
 - Goals of GWAS
 - What does the data look like?
 - GWAS Quality Control (QC)
 - 5 min breakout session
- Part 2 (~40 minutes)
 - Relatedness checking
 - Population stratification
 - Principal components analysis (PCA)
 - Imputation
 - 5 min breakout session

• Part 3 (~40 minutes)


- Association testing
- Meta-analysis
- Polygenic Scoring
- 5 min breakout session

Preparation for module 3 / additional reading / lingering questions

Association testing

Association testing

• *Main question*: Does the phenotype examined associate/correlate with the genetic variant?

Tests of SNP association

- Case/control:
 - Chi-square test on contingency table
 - Fisher's exact test
 - Cochran-Mantel-Haenszel test
 - Cochran-Armitage trend test
 - Logistic regression
- Case/control & quantitative traits:
 - Permutation

Chi-square test

p=1

- plink --assoc = chi-square test on alleles
- Null hypothesis: alleles are independent of disease state

$$\chi^{2} = \sum_{i=1}^{n} \frac{(O_{i} - E_{i})^{2}}{E_{i}}$$

- *n* = the number of allele disease combinations (= 4)
- *O_i* = an observed frequency
- E_i = an expected (theoretical) frequency, asserted by the null hypothesis of no independence between allele and disease
- X^2 = the test statistic that asymptotically approaches a χ^2 distribution

Allele 1 18 12 30	
0.6 * 30 = 18 Allele 2 42 28 70	
x^2 stat = 0 Total 60 40 100	

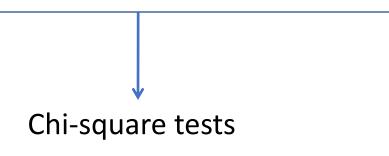
Fisher's exact test

- plink --fisher = Fisher's exact test
- Null hypothesis: alleles are independent of disease state
- Should be used instead of the chi-square test if ≥ 1 cells have ≤ 5 observations.
- More computationally expensive than chisq test

	Cases	Controls	Total
Allele 1	а	b	a+b
Allele 2	С	d	c+d
Total	a+c	b+d	n

$$p = \frac{\binom{a+b}{c}\binom{c+d}{c}}{\binom{n}{a+c}}$$

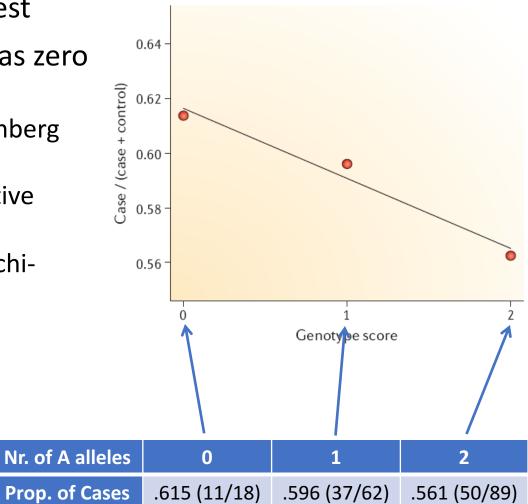
Cochran-Mantel-Haenszel (CMH) test


- plink --mh = Cochran-Mantel-Haenszel test
- Comparable to chi-square test, but within different groups (such as different subpopulations to correct for stratification)

Pop 1	Cases	Controls	Pop 2	Cases	Controls
Allele 1	а	b	Allele 1	а	b
Allele 2	С	d	Allele 2	С	d

$$\chi^{2}_{MH} = \frac{\{/\sum [a - (a + b)(a + c) / n | -0.5\}^{2}}{\sum (a + b)(a + c)(b + d)(c + d) / (n^{3} - n^{2})}$$

Cochran-Armitage trend test


- plink --model =
 - Cochran-Armitage trend test
 - Allelic test: D vs d
 - Genotypic test: DD vs Dd vs dd
 - Test for dominant effect of D: (DD & Dd) vs dd
 - Test for recessive effect of D: DD vs (Dd & dd)

Cochran-Armitage trend test

- Cochran-Armitage trend test
- Null hypothesis: the line has zero slope
 - Does not assume Hardy-Weinberg equilibrium (HWE)
 - Assumes that there are additive effects
 - More conservative than the chisquare test

	Cases	Controls	Total
AA	11	7	18
Aa	37	25	62
аа	50	39	89
Total	98	71	164

Logistic regression

- plink --logistic = logistic regression (= regression analysis for categorical data)
- A useful way to describe the relationship between one or more risk factors (alleles + covariates) and a binary trait (case/control).
- Allows testing of allelic, genotypic, dominant & recessive effects.

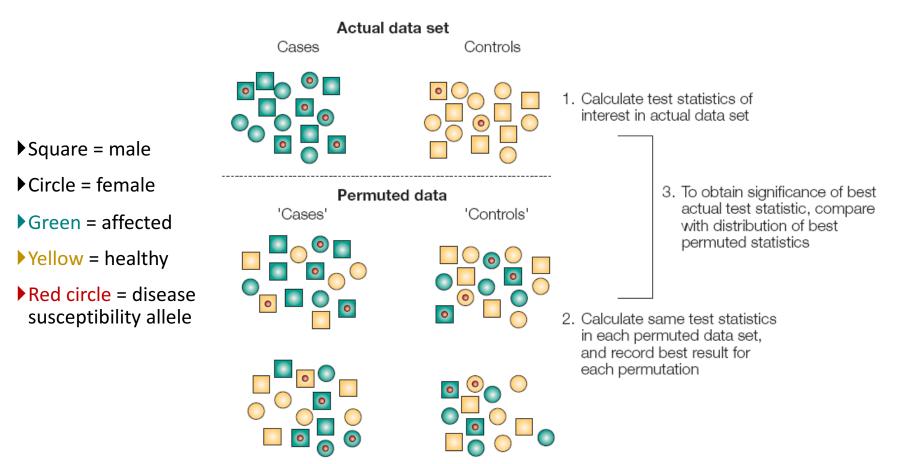
$$ln\left(\frac{P}{1-P}\right) = \alpha + \beta_1 x_1 + \beta_2 x_2 + \dots \beta_i x_i$$

- Plink gives the *p*-value and the odds ratio (OR) of the risk factor
- OR = e^{β}

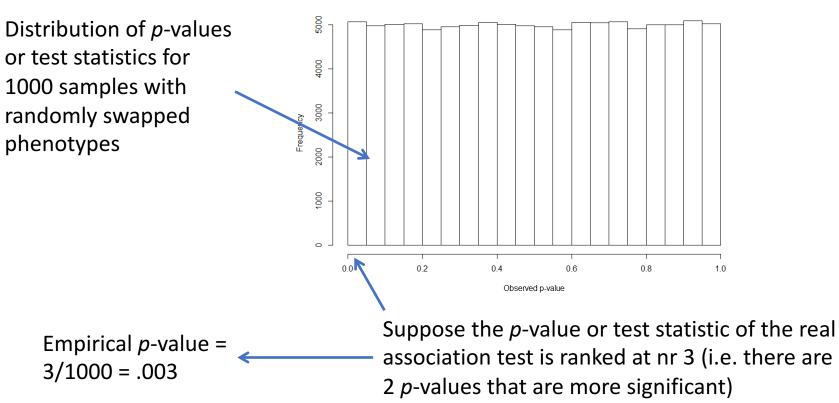
Case/control odds ratio

 Odds Ratio (OR) = a measure of effect size, describing the strength of association between two binary data values (alleles 1 & 2 – case & control status).

	Cases	Controls	ard
Allele 1	а	b	$\longrightarrow OR = \frac{a \times d}{c}$
Allele 2	С	d	b×c


An OR of 1.2 for example, means that the odds (<u>not the</u> <u>probability!</u>) of getting the disease increases with a factor of 1.2 if you carry the risk allele (odds = $\frac{P}{1-P}$).

	Cases	Controls	
Allele 1	120	100	$\longrightarrow OR = 1.2$
Allele 2	100	100	


Case/control phenotype

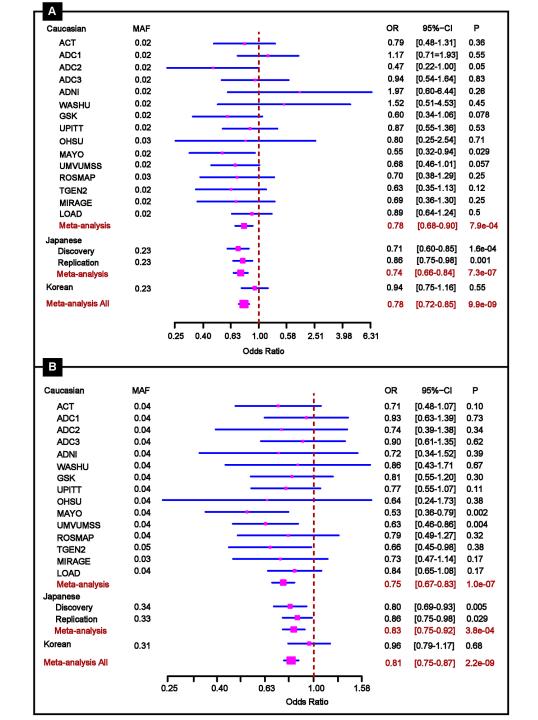
- No *a priori* hypothesis:
 - Chi square test genotypic (2×3): --model
 - Logistic regression genotypic (allows covariates): --logistic
- Additive effects:
 - Cochran-Armitage test (doesn't assume HWE) (2×2): --model
 - Chi square test allelic (large sample size) (2×2): --assoc
 - Fisher's exact test allelic (small sample size) (2×2): --fisher
 - Logistic regression allele test (allows covariates): --logistic
- Dominant effects:
 - Chi square test genotypic (2×2): --model
 - Logistic regression dominance test (allows covariates): --logistic
- Recessive effects:
 - Chi square test genotypic (2×2): --model
 - Logistic regression recessive test (allows covariates): --logistic

This empirical method evaluates how often a given *p*-value would arise by chance if the study were repeated without any true associations.

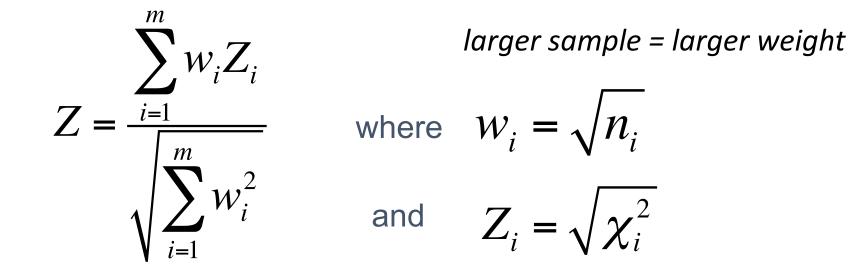
- How is the empirical *p*-value calculated?
 - (rank of the *p*-value of the real dataset) / (nr of permutations)

Histogram of p-values under the null

- Advantages
 - Does not assume that the phenotype is normally distributed
 - Does not assume HWE
 - Better for rare alleles and small sample sizes
 - Empirical *p*-values can be corrected for multiple testing, while preserving the correlational structure between all SNPs (= less conservative than Bonferroni correction = less false negatives)
 - Allows for association analyses within clusters (which allows you to correct for population stratification and other confounding variables)
- Disadvantage:
 - It can take a very long time to compute...

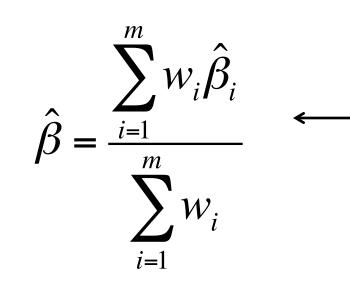

- Plink can do two kinds of permutation:
 - Adaptive: permutations of SNPs that are not likely to be significant are stopped prematurely. The advantage is that the permutation procedure does not have to take as long.
 - max(T): all permutations are performed for all SNPs. The advantage is that this allows for the calculation of a *p*-value that is corrected for multiple testing.

GWAS Meta-Analysis


Meta-analysis

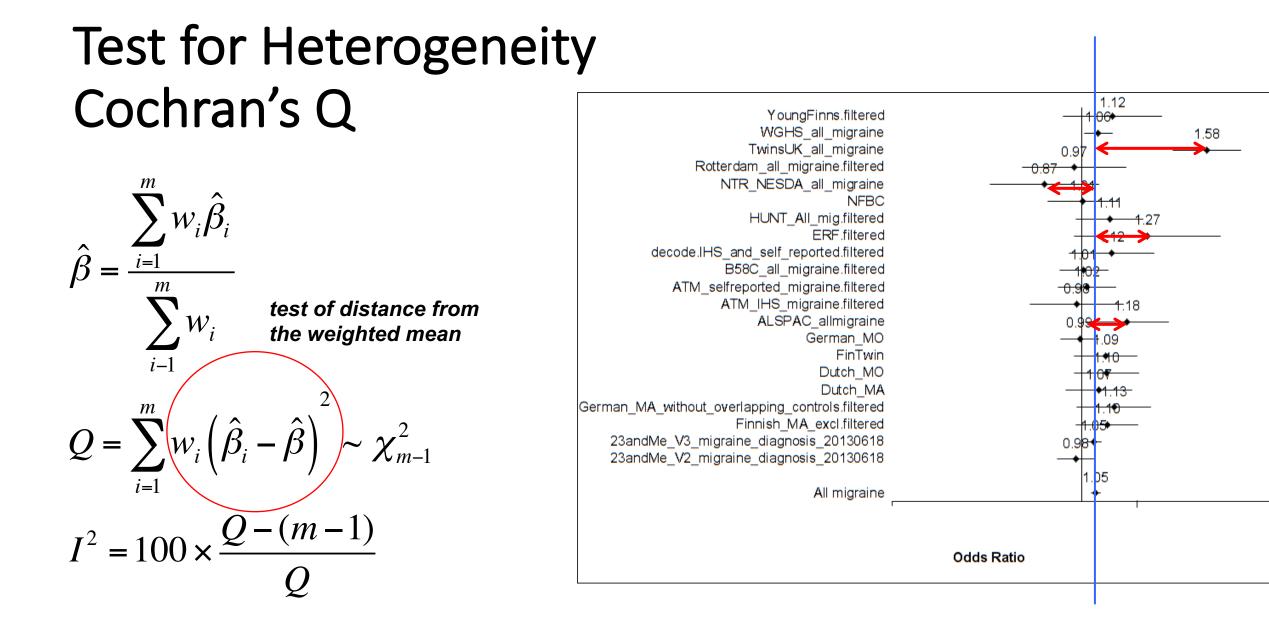
Goal: Combine separate studies to increase power to discover SNP associations

- Evaluate summary statistics (quicker/lighter)
- Examine potential study bias



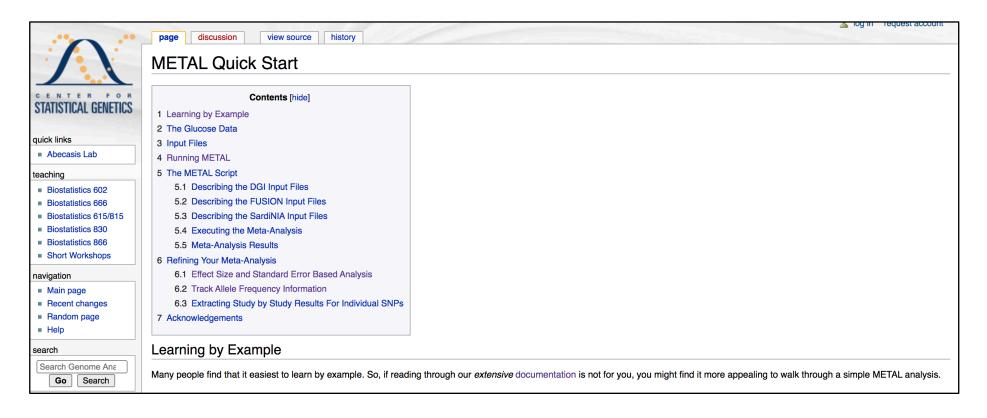
Significance - Weighted Z

The test statistic Z_i can be obtained from two-tailed *p*-values and the direction of effect, or one-tailed *p*-values, using the inverse normal distribution function


Effect size - Weighted β

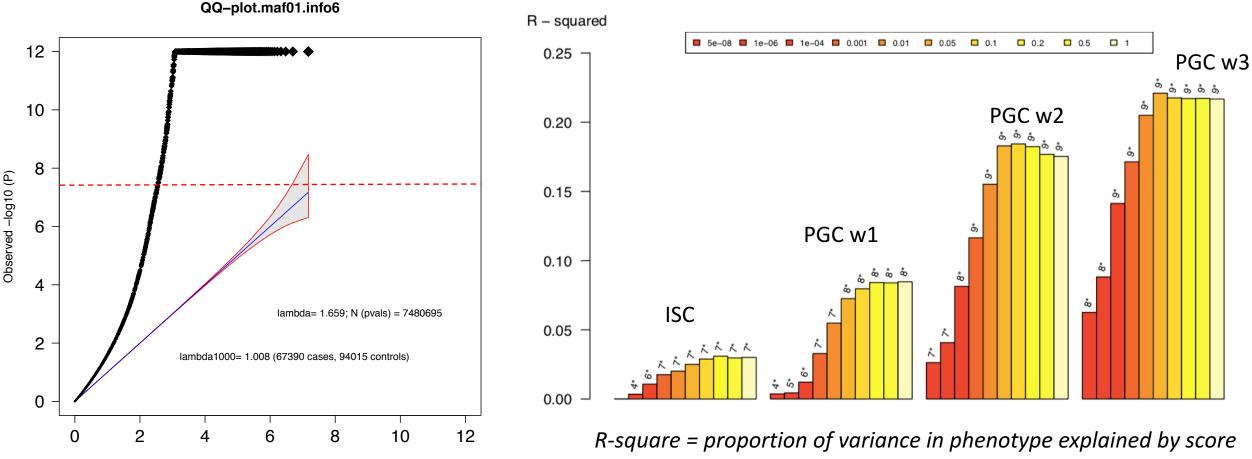
larger sample -> smaller standard error -> larger weight

$W_i =$	$=\overline{\sigma_i^2}$	r (
P 9e-05 0e-05 6e-05 6e-05 4e-05 7e-05 2e-05	SE^*	= 1	$\frac{1}{\sum_{i=1}^{m} \frac{1}{\sigma_i^2}}$


CHR	SNP	BP	NMISS	BETA	SE	R2	т	P
2	exm-rs10199914	239896861	2884	-0.1214	0.02747	0.006729	-4.419	1.029e-05
1	exm83171	111490837	2884	-0.8702	0.19780	0.006668	-4.398	1.130e-05
10	exm836623	79601934	2884	-2.5020	0.58020	0.006413	-4.313	1.666e-05
9	exm790074	134321955	2881	0.6023	0.14470	0.005981	4.162	3.246e-05
3	exm305671	44636284	2884	-2.8950	0.71070	0.005726	-4.074	4.744e-05
2	exm266787	219854997	2884	-2.3490	0.58040	0.005653	-4.048	5.307e-05
8	exm733014	145736215	2883	-1.8150	0.44970	0.005625	-4.037	5.552e-05
10	exm853248	105194086	2884	-0.1116	0.02788	0.005535	-4.005	6.355e-05
14	exm1091009	23939305	2884	-0.8758	0.22010	0.005466	-3.980	7.069e-05
9	exm736710	4618014	2883	1.7840	0.44980	0.005428	3.965	7.512e-05
4	exm419283	113352955	2884	-2.8020	0.71080	0.005362	-3.941	8.291e-05
22	exm1595949	26286807	2884	-2.7700	0.71090	0.005240	-3.896	9.988e-05
2	exm201502	71887715	2884	-1.4610	0.38030	0.005098	-3.843	1.243e-04

Meta-analysis software: METAL

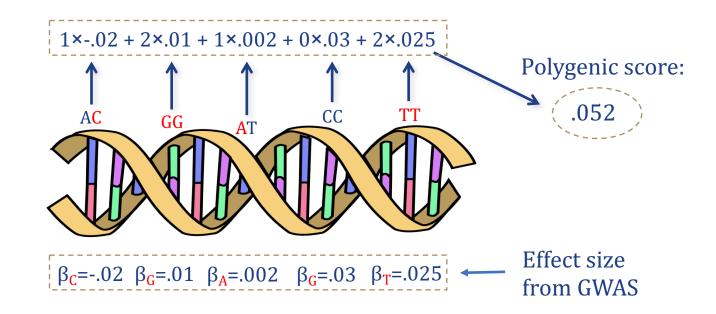
http://www.sph.umich.edu/csg/abecasis/metal/


Documentation can be found at the metal wiki: <u>https://genome.sph.umich.edu/wiki/METAL</u>

Polygenic Scores

Polygenic scores – adding up the effects

From PGC SCZ wave 3



Expected –log10 (P)

Polygenic Scores (PGS or PS)

Polygenic Scores capture (part of) someone's genetic "risk" by summing all risk alleles weighted by the effect sizes estimated in a Genome-Wide Association Study (GWAS)

Also known as polygenic risk scores (PRS), genetic risk score (GRS), or genome-wide score (GS)

Polygenic Scores

 By summing the collective effect sizes of many SNPs you can quantify part of the genetic "risk" in an <u>independent</u> dataset

 Polygenic Scores generally improve when adding SNPs that individually didn't reach genome-wide significance http://zzz.bwh.harvard.edu/plink/profile.shtml

Basic usage The basic command to generate a score is the --score option, e.g. ./plink --bfile mydata --score myprofile.raw which takes as a parameter the name of a file (here myprofile.raw) that describes the scoring system. This file has the format of one or more lines, each with exactly three fields SNP ID Reference allele Score (numeric) for example SNPA Α 1.95 2.04 SNPB С С -0.98 SNPC SNPD С -0.24 These scores can be based on whatever you want. One choice might be the log of the odds ratio for significantly associated SNPs, for example. Then, running the command above would generate a file plink.profile with one individual per row and the fields: FID Family ID Individual ID IID PHENO Phenotype for that CNT Number of non-missing SNPs used for scoring CNT2 The number of named alleles SCORE Total score for that individual

Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations

Amit V. Khera^{1,2,3,4,5}, Mark Chaffin ¹,^{4,5}, Krishna G. Aragam^{1,2,3,4}, Mary E. Haas⁴, Carolina Roselli ⁴, Seung Hoan Choi⁴, Pradeep Natarajan ^{2,3,4}, Eric S. Lander⁴, Steven A. Lubitz ^{2,3,4}, Patrick T. Ellinor ^{2,3,4} and Sekar Kathiresan ^{1,2,3,4*}

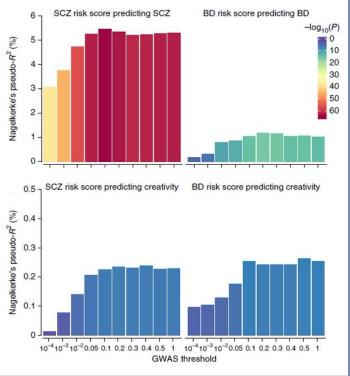


Fig. 2 | **Risk for CAD according to GPS. a**, Distribution of GPS_{CAD} in the UK Biobank testing dataset (n = 288,978). The x axis represents GPS_{CAD} , with values scaled to a mean of 0 and a standard deviation of 1 to facilitate interpretation. Shading reflects the proportion of the population with three-, four-, and fivefold increased risk versus the remainder of the population. The odds ratio was assessed in a logistic regression model adjusted for age, sex, genotyping array, and the first four principal components of ancestry. **b**, GPS_{CAD} percentile among CAD cases versus controls in the UK Biobank testing dataset. Within each boxplot, the horizontal lines reflect the median, the top and bottom of each box reflect the interquartile range, and the whiskers reflect the maximum and minimum values within each grouping. **c**, Prevalence of CAD according to 100 groups of the testing dataset binned according to the percentile of the GPS_{CAD}.

nature neuroscience

Polygenic risk scores for schizophrenia and bipolar disorder predict creativity

Robert A Power^{1,2}, Stacy Steinberg¹, Gyda Bjornsdottir¹, Cornelius A Rietveld³, Abdel Abdellaoui⁴, Michel M Nivard⁴, Magnus Johannesson⁵, Tessel E Galesloot⁶, Jouke J Hottenga⁴, Gonneke Willemsen⁴, David Cesarini⁷, Daniel J Benjamin⁸, Patrik K E Magnusson⁹, Fredrik Ullén¹⁰, Henning Tiemeier¹¹, Albert Hofman¹¹, Frank J A van Rooij¹¹, G Bragi Walters¹, Engilbert Sigurdsson^{12,13}, Thorgeir E Thorgeirsson¹, Andres Ingason¹, Agnar Helgason^{1,13}, Augustine Kong¹, Lambertus A Kiemeney⁶, Philipp Koellinger¹⁴, Dorret I Boomsma⁴, Daniel Gudbjartsson¹, Hreinn Stefansson¹ & Kari Stefansson^{1,13}

Breakout session (5 min)

- Breakout into small groups
- Introduce yourself to everyone
- Person with LATEST letter in their LAST name will be the note taker
 - E.g. <u>Zerick is the note taker, not Adelson</u>
 - E.g. <u>Ab</u>raham is the note taker, not <u>Ad</u>elson
- Ask any questions you have:
 - "I didn't understand what meant"
 - "I'm confused by what is being added in the polygenic score"
- Note takers relay unanswered questions from the breakout session

Lecture Format

- Part 1 (~40 minutes)
 - Goals of GWAS
 - What does the data look like?
 - GWAS Quality Control (QC)
 - 5 min breakout session
- Part 2 (~40 minutes)
 - Relatedness checking
 - Population stratification
 - Principal components analysis (PCA)
 - Imputation
 - 5 min breakout session
- Part 3 (~40 minutes)
 - Association testing
 - Meta-analysis
 - Polygenic Scoring
 - 5 min breakout session

• Preparation for module 3 / additional reading / lingering questions

For the next module...

- Preparation for module 3
 - Access to ATGU wiki:
 - <u>https://sites.google.com/a/broadinstitute.org/atgu</u>
 - Useful UNIX commands
 - <u>https://sites.google.com/a/broadinstitute.org/atgu/getting-started/useful-unix-commands</u>
 - Logging onto Broad servers:
 - <u>https://sites.google.com/a/broadinstitute.org/atgu/getting-started</u>
- Additional reading
 - Papers behind most of the methods used in statistical genetics:
 - <u>https://sites.google.com/a/broadinstitute.org/atgu/core-publication-list</u>
 - 10 years of GWAS discovery: Visscher_GWAS10yrs_AJHG_2017.pdf
 - Genetic architecture of complex traits: Timpson_GeneticArch_NRG_2017.pdf
- Final questions??