Introduction to
 Genome-Wide Association Studies (GWAS)
 2020 ATGU welcome workshop
 Presenter: Daniel Howrigan
 Data group leader - Neale Lab
 Slides adopted from:
 Boulder Colorado Stat Gen Workshop (Lucia Colodro Conde, Katrina Grasby, Shaun Purcell, Abdel Abdellaoui, Sarah Medland)
 Genetics course slides from Abdel Abdellaoui @dr_appie

Lecture Format

- Part 1 (~40 minutes)
- Goals of GWAS
- What does the data look like?
- GWAS Quality Control (QC)
- 5 min breakout session
- Part 2 (~ 40 minutes)
- Relatedness checking
- Population stratification
- Principal components analysis (PCA)
- Imputation
- 5 min breakout session
- Part 3 (~ 40 minutes)
- Association testing
- Meta-analysis
- Polygenic Scoring
- 5 min breakout session
- Preparation for module 3 / additional reading / lingering questions

Lecture Format

- Part 1 (~ 40 minutes)
- Goals of GWAS
- What does the data look like?
- GWAS Quality Control (QC)
- 5 min breakout session

Goals of Genome Wide Association Studies

- Go from trait heritability towards biological mechanism
- What genes/genetic variants drive heritable differences?
- Genome-wide interrogation
- Moving away from candidate gene studies
- Technological advancement and dropping cost
- Flexible application of study design
- All heritable traits can be studied
- Biological/mathematical properties of DNA quite robust

GWAS of Schizophrenia

GWAS of $\sim 4,200$ traits

Ibiobank ${ }^{\text {T }}$
 Improving the health of future generations

adenine (A), thymine (T), cytosine (C), guanine (G)

Single Nucleotide Polymorphism SNP

Allele 1 = C
Allele 2 = A
Bi -allelic combinations $=\mathrm{C} / \mathrm{C}, \mathrm{C} / \mathrm{A}, \mathrm{A} / \mathrm{A}$

Genetic variation: differences in the sequence of DNA among individuals.
Mutation: a newly arisen variant

Examples of genetic variation

2bp to 1,000bp

- VNTRs: microsatellites, minisatellites
- indels
- inversions
- di-, tri-, tetranucleotide repeats

1kb to submicroscopic

- copy number variants
- segmental duplications
- inversions, translocations
- copy number variant regions
- microdeletions, microduplications

Microscopic to subchromosoma

- segmental aneusomy
- chromosomal deletions (losses)
- chromosomal insertions (gains)
- chromosomal inversions
- intrachromosomal translocations
- chromosomal abnormality
- heteromorphisms
- fragile sites

Whole chromosomal to whole genome

- interchromosomal translocations

- ring chromosomes, isochromosomes
- marker chromosomes
- aneuploidy
- aneusomy

Genotyping

- There are three chip-manufacturers: Illumina, Affymetrix \& Perlegen

- Intensity measures are produced for both alleles. Genotypes are assigned based on clustering of these two intensities.

From DNA to data

Genotype Intensities

Good SNP (Illumina chip)

履

Same SNP, normalized intensities

Same SNP, different view

Bad SNP

Another bad SNP

rs11785664

Another bad SNP

隹

Another bad SNP

PLINK data format of GWAS data

Subjects

.fam file

FID	IID	PID	MID	SEX	AFF
Taiw_1	PT-VXBB PT-VXES	PT-VXEG	1	2	
Taiw_1	PT-VXEG	0	0	2	1
Taiw_1	PT-VXES	0	0	1	1
Taiw_2	PT-VX4A	0	0	1	1
Taiw_2	PT-VX7E PT-VX4A	PT-VX72	1	2	
Taiw_2	PT-VX72	0	0	2	1
Taiw_4	PT-VX6B	0	0	2	1
Taiw_4	PT-VX6N PT-VX73	PT-VX6B	2	2	
Taiw_4	PT-VX73	0	0	1	1
Taiw_5	PT-VX5N PT-VX5Z	PT-VX6M	2	2	

FID = family ID
IID = Individual ID
PID = paternal ID
MID = maternal ID
AFF = affection status
CHR = chromosome
POS = position
A1 $=0$ allele
A2 = 1 allele

Genetic variants

.bim file (or .map file)

CHR	POS	SNP ID	A1	A2
1	11852412	rs45496998	A	G
1	11853994	rs116620395	G	C
1	11854457	rs4846051	A	G
1	11854476	rs1801131	G	T
1	11854500	rs200137991	A	C
1	11854823	rs121434296	A	G
1	11855218	$1: 11855218$	G	A
1	11855218	rs121434297	G	A
1	11856328	rs190090719	G	A
1	11856378	rs1801133	A	G
1	11857788	rs17421511	A	G
1	11859046	GSA-rs375817840	A	G
1	11859636	GSA-rs74683406	A	G
1	11861223	rs121434295	T	C
1	11862778	rs17367504	G	A
1	11863022	seq-rs201618781	T	C
1	11863038	rs138189536	A	G
1	11863562	chr1-11863562	A	G
1	11865250	GSA-rs3753583	A	G
1	11870279	GSA-rs34994762	G	A
1	11886226	rs202066883	G	C

Genotype data

.ped file

P1			A	C		G		T	T		A	A	T	
P2	A		A	A		G		G	T		A	C		
	C		A	C	G	G		T	T			A	T	
P4	C		A	A	G	G		G	T				T	

.bed file

> 0101010010101010101
> 1010011101010101010
> 1101110101001010101
> 1101001011101101010
> 1101010101010111010

GWAS QC

GWAS Quality Control (QC)

- GOAL: Remove bad samples/SNPs, keep good samples/SNPs
- Preliminary strategies (first pass)
- Poorly genotyped samples / SNP markers
- Deviations from Hardy-Weinberg
- Related or duplicated samples (population-based data)
- Follow-up strategies
- Batch effects
- Quality differences between datasets
- Comparison with reference data
...and more

Sample QC

- Poorly genotyped individuals
- Indications of sample mix-up (sex check or ancestry match)
- Poor quality DNA (high number of failed SNP calls)
- Contaminated DNA (unusual levels of heterozygosity)
- Related individuals
- Family-based and population-based samples require different experimental designs
- Related individuals can bias test statistics across the whole-genome
- In family-based association: Mendelian errors used as QC

SNP QC

- Poorly genotyped SNPs

- Poor primer design / nonspecific DNA binding (high number of failed SNP calls)
- Poor clustering of genotype intensities (deviation from HWE)
- Mendelian errors (if family-based data available)
- Uninformative SNPs (too rare or mono-allelic)
- Follow-up on association signals
- No QC protocol will eliminate all instances of genotyping error
- Important to re-analyze original intensity of significant associations (whenever possible)
- For meta-analysis, examining heterogeneity of SNP effect

Preliminary QC steps

- SAMPLE: Sex-check (chr X heterozygosity)
- SNP: Genotyping Call Rate (genotypes missed in individuals)
- SAMPLE: Sample Call Rate (individuals missing genotypes)
- SNP: Hardy-Weinberg Equilibrium
- SAMPLE: Proportion of Heterozygosity
- SAMPLE/SNP: Mendelian errors

Confirming genetic sex

- Primary question: Is the sample-level data correctly matching the SNP data?

Female sex $=X / X$ Male sex $=X / Y$

Example .sexcheck file from PLINK (male=1, female=2)

FID	IID	PEDSEX	SNPSEX	STATUS	F
T304	T30411	1	1	OK	0.9857
A0641C	06410021 C	1	1	OK	0.9841
T06013	T2601310	2	2	OK	-0.06164
T01533	T2153321	1	1	OK	0.9841
T330	T33021	1	1	OK	0.9867
T191	T19120	2	2	OK	0.01155
T329	T32911	1	1	OK	0.9839
T07981	T2798111	1	1	OK	0.9822
A0601C	06010021C	1	1	OK	0.9858
A1008C	10080011C	1	1	OK	0.9817
A0880C	08800331C	1	1	OK	0.9818
T00894	T2089420	2	2	OK	0.01927
A0701C	07010011C	1	1	OK	0.9807
T02911	T2291121	1	1	OK	0.9851
T00588	T2058811	1	2	PROBLEM	-0.3396
A0805C	08050031C	1	1	OK	0.9821
T07755	T2775520	2	2	OK	-0.09906
T03676	T2367611	1	1	OK	0.9845
T082	T08220	2	1	PROBLEM	0.9833

SNP genotyping call rate (or "missingness")

Example .Imiss file from PLINK

- Usually done iteratively
- Remove SNPs with < 95\% call rate
- Run sample QC
- Remove SNPs with < 98\% call rate

CHR	SNP	N_MISS	N_GENO	F_MISS
1	rs12565286	6	200	0.03
1	rs12124819	8	200	0.04
1	rs4970383	0	200	0
1	rs13303118	0	200	0
1	rs35940137	0	200	0
1	rs2465136	1	200	0.005
1	rs2488991	0	200	0
1	rs3766192	0	200	0
1	rs10907177	0	200	0

Example .missing file from PLINK

- For case/control data
- Look at difference in genotyping rate
- Threshold usually at > 2\% call rate difference

CHR	SNP	F_MISS_A	FMISS_U	P
1	rs12565286	0.03125	0.03093	1
1	rs12124819	0.05208	0.03093	0.4974
1	rs2465136	0	0.01031	1
1	rs4970357	0	0.02062	0.4974
1	rs11466691	0	0.01031	1
1	rs11466681	0.01042	0.01031	1
1	rs34945898	0.03125	0	0.1211
1	rs715643	0.05208	0.02062	0.2787
1	rs13306651	0.01042	0.03093	0.6211

Sample genotyping call rate

Example .imiss file from PLINK

Missing genotypes

FID	I
NA20505	N

NA20505 NA20506 NA20502 NA20528 NA20531 NA20534 NA20535 NA20586

IID NA20505

MISS_PHENO NA20504 NA20506 NA20506 N NA20528 N NA20531 N NA20534 N NA20535 N NA20586 N

$1 \overline{2} 2$

 1406 204847 219 96 338 182 182 214 1003100.002034 $100310 \quad 0.008444$ $100310 \quad 0.002183$ $100310 \quad 0.000957$ $100310 \quad 0.00337$ $100310 \quad 0.001814$ $100310 \quad 0.002133$

To generate a list genotyping/missingness rate statistics:
plink --file data --missing
This option creates two files:

```
plink.imiss
plink.lmiss
```

which detail missingness by individual and by SNP (locus), respectively. For individuals, the format is:

```
FID Family ID
IID Individual ID
MISS_PHENO Missing phenotype? (Y/N)
N_MISS
N GENO
F_MISS
```

```
Number of missing SNPs
```

Number of missing SNPs
Number of non-obligatory missing genotypes
Number of non-obligatory missing genotypes
Proportion of missing SNPs

```
Proportion of missing SNPs
```

http://zzz.bwh.harvard.edu/plink/summary.shtm/\#missing

Hardy-Weinberg Equilibrium (HWE)

- A genetic variant is said to be in HWE if the genotype frequencies can be predicted by the allele frequencies in the following way:
- If:
$\left.\begin{array}{l}f(A 1)=p \\ f(A 2)=q\end{array}\right\} \quad p+q=1$
- Then:
- $f(A 1 / A 1)=p^{2}$
- $f(A 1 / A 2)=2 p q-p^{2}+2 p q+q^{2}=1$
- $f(A 2 / A 2)=q^{2}$

Example:
$p=0.2$
$q=0.8$
p2 $=0.04$
$2 p q=0.32$
$q 2=0.64$

In C/T SNP terms:

C allele freq. $=20 \%$
T allele freq. $=80 \%$

C/C freq. $=4 \%$
C/T freq. $=32 \%$
T / T freq. $=64 \%$

Testing for deviation from HWE

Deviations from HWE can be caused by:

- Non-random mating (inbreeding, assortative mating, ...)
- Population stratification
- Mutation
- Limited population size
- Random genetic drift
- Gene flow

| CHR | SNP | TEST | A1 | A2 | GENO | O(HET) | E(HET) | P |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | rs12565286 | ALL | C | G | $0 / 17 / 170$ | 0.09091 | 0.08678 | 1 |
| 1 | rs 12565286 | AFF | C | G | $0 / 6 / 87$ | 0.06452 | 0.06243 | 1 |
| 1 | rs12565286 | UNAFF | C | G | $0 / 11 / 83$ | 0.117 | 0.1102 | 1 |
| 1 | rs12124819 | ALL | G | A | $0 / 77 / 108$ | 0.4162 | 0.3296 | 6.919 e-05 |
| 1 | rs12124819 | AFF | G | A | $0 / 41 / 50$ | 0.4505 | 0.3491 | 0.004878 |
| 1 | rs12124819 | UNAFF | G | A | $0 / 36 / 58$ | 0.383 | 0.3096 | 0.02001 |
| 1 | rs4970383 | ALL | A | C | $10 / 68 / 115$ | 0.3523 | 0.352 | 1 |
| 1 | rs4970383 | AFF | A | C | $3 / 36 / 57$ | 0.375 | 0.3418 | 0.5488 |
| 1 | rs4970383 | UNAFF | A | C | $7 / 32 / 58$ | 0.3299 | 0.3618 | 0.401 |

- Genotyping errors
- Selection (\rightarrow may be due to true association!)

So only extreme deviation from $\operatorname{HWE}\left(p<10^{-6}\right)$ is worrisome.

Proportion of heterozygosity (Fhet)

Inbreeding coefficients

Given a large number of SNPs, in a homogeneous sample, it is possible to calculate inbreeding coefficients (i.e. based on the observed versus expected number of homozygous genotypes).
plink --file mydata --het
which will create the output file
plink.het
which contains the fields, one row per person in the file:

FID	Family ID
IID	Individual ID
O(HOM)	Observed number of homozygotes
E(HOM)	Expected number of homozygotes
N(NM)	Number of non-missing genotypes
F	F inbreeding coefficient estimate

Note With whole genome data, it is probably best to apply this analysis to a subset that are pruned to be in approximate linkage equilibrium, say on the order of 50,000 autosomal SNPs. Use the --indep-pairwise and --indep commands to achieve this, described here.

Note The estimate of F can sometimes be negative. Often this will just reflect random sampling error, but a result that is strongly negative (i.e. an individual has fewer homozygotes than one would expect by chance at the genome-wide level) can reflect other factors, e.g. sample contamination events perhaps

Mendelian errors

- Requires parent-offspring data
- Similar to genotyping rate, can be examined at sample and SNP level
- High sample-level mendel error rate
- Parental uncertainty
- High SNP-level mendel error rate
- Poor genotype quality


```
Mendel errors
--mendel ['summaries-on7y']
    -mende1-duos
    -mende1-multigen
--mendel scans the dataset for Mendel errors, writing a set of reports to
plink\{.mendel,.imendel,.fmendel,.Imendel\}. Haploid and mitochondrial data are ignored. The errors are classified as follows, where '1' refers to the A1 (usually minor) allele and '2' refers to A2
\begin{tabular}{lllll} 
Code & Pat. genotype & Mat. genotype & Child genotype & Samples implicated \\
1 & 11 & 11 & 12 & all \\
2 & 22 & 22 & 12 & all \\
3 & 22 & \(11 / 12 /\) missing & 11 & father, child \\
4 & \(11 / 12 /\) missing & 22 & 11 & mother, child \\
5 & 22 & 22 & 11 & child \\
6 & 11 & \(12 / 22 /\) missing & 22 & father, child \\
7 & \(12 / 22 /\) missing & 11 & 22 & mother, child \\
8 & 11 & 11 & 22 & child \\
9 & (Xchr male) & 11 & 22 & mother, child \\
10 & (Xchr male) & 22 & 11 & mother, child
\end{tabular}
```

https://www.cog-genomics.org/plink/1.9/basic_stats\#mendel

Linkage disequilibrium (LD) allows us to be more robust with our QC protocols

- Properties of linkage disequilibrium reduce the loss of signal sensitivity when removing SNPs
- Strict multiple testing correction requires very large samples - no single sample will drive a signal
- LD must be taken into account when examining genetic relatedness, population stratification, and interpreting association

Breakout session (5 min)

- Breakout into small groups
- Introduce yourself to everyone
- Person with earliest letter in their FIRST name will be the note taker
- E.g. Aaron is the note taker, not Zenia
- E.g. Aaron is the note taker, not Abel
- Ask any questions you have:
- "I didn't understand what meant"
- "I'm confused by the sample/SNP difference in heterzygosity"
- Note takers relay unanswered questions from the breakout session

Lecture Format

- Part 1 (~40 minutes)
- Goals of GWAS
- What does the data look like?
- Part 2 (~ 40 minutes)
- Relatedness checking
- Population stratification
- Principal components analysis (PCA)
- Imputation
- 5 min breakout session

Genetic Relatedness

Genetic relatedness using Identity-By-Descent (IBD) calculation

- Question: How much does a pair of samples share 0,1 , or both alleles?
- Identical twins: Shares both alleles across entire genome (barring mutation events)
- Requires using LD-pruned SNPs for accurate estimates
- Want each SNP to be an "independent" marker
- Used to both "confirm" and "filter" related individuals

Checking genotype relatedness across samples

Example of .genome file in PLINK

FID1	IID1	FID2	IID2	RT	EZ	z0	Z1	Z2	PI HAT	PHE	DST	PPC	RATIO
NA20505	NA20505	NA20506	NA20506	UN	NA	0.9872	0.0000	0.0128	0.0128	-1	0.771435	0.3446	1.9712
NA20505	NA20505	NA20502	NA20502	UN	NA	0.9888	0.0096	0.0016	0.0064	-1	0.770233	0.3950	1.9808
NA20505	NA20505	NA20528	NA20528	UN	NA	0.9733	0.0267	0.0000	0.0133	-1	0.770068	0.2922	1.9606
NA20505	NA20505	NA20531	NA20531	UN	NA	0.9789	0.0205	0.0006	0.0109	-1	0.770976	0.7407	2.0479
NA20505	NA20505	NA20534	NA20534	UN	NA	0.9602	0.0398	0.0000	0.0199	-1	0.772123	0.3046	1.9631
NA20505	NA20505	NA20535	NA20535	UN	NA	0.9650	0.0350	0.0000	0.0175	-1	0.771054	0.6510	2.0285
NA20505	NA20505	NA20586	NA20586	UN	NA	0.9728	0.0272	0.0000	0.0136	-1	0.770687	0.4281	1.9869
NA20505	NA20505	NA20756	NA20756	UN	NA	0.9675	0.0325	0.0000	0.0163	-1	0.770762	0.6902	2.0365
NA20505	NA20505	NA20760	NA20760	UN	NA	0.9344	0.0656	0.0000	0.0328	0	0.770978	0.8856	2.0904

	Probability of Sharing IBD Alleles		
Relative Pair	π_{0}	π_{1}	$\boldsymbol{\pi}_{2}$
MZ Twins	0	0	1
Full Sibs	0.25	0.50	0.25
Parent-Offspring	0	1	0
First Cousin	0.75	0.25	0
Grandparent- Grandchild	0.50	0.50	0
Half-Sibs	0.50	0.50	0
Avuncular	0.50	0.50	0

Using genetic relatedness estimates

- Confirm unrelated or "population-based" sample ascertainment
- Filter out related samples (pi-hat > 0.2 often used)
- "Cryptic relatedness" - related individuals identified in "unrelated" sample
- Confirm family structure (pedigree)
- Ensure parent-child and sibling relationship
- Watch out for distinct ancestries
- Can skew IBD estimates and incorrectly identify recent relatedness
- PCrelate more robust to these patterns https://rdrr.io/bioc/GENESIS/man/pcrelate.html

Population Stratification

I
Abdel Abdellaoui
Department of Psychiatry, Amsterdam UMC, University of Amsterdam

Largest patterns of genetic variation = ancestry

88% of GWAS participants is of European descent

Fig. 3 A Choropleth Map of the Concentration of GWAS Participant Recruitment. A choropleth map (Robinson projection) detailing the geographic recruitment of GWAS participants. Source: NHGRI-EBI GWAS Catalog, Natural Earth (v4.0.0) and the CIA World Factbook. Replication material provides a per-capita population adjusted version

Population stratification

- Population stratification = a systematic difference in allele frequencies between (sub)populations due to different ancestry.
- Can cause false positives if the trait values also differ between the (sub)populations.

Population stratification: chopstick example

Sample 1 Americans: $\chi^{2}=0, p=1$			
	Use of chopsticks		
	Yes	No	Total
Allele 1	320	320	640
Allele 2	80	80	160
Total	400	400	800

Sample 2 Chinese: $\chi^{2}=0, p=1$			
	Use of chopsticks		
	Yes	No	Total
Allele 1	320	20	340
Allele 2	320	20	340
Total	640	40	680

Population stratification: chopstick example

Sample 1 Americans: $\chi^{2}=0, p=1$				Sample 2 Chinese: $\chi^{2}=0, p=1$			
	Use of chopsticks				Use of chopsticks		
	Yes	No			Yes	No	Total
Allele 1	320	320	640	Allele 1	320	20	340
Allele 2	80	80	160	Allele 2	320	20	340
Total	400	400	800	Total	640		680

Population stratification: chopstick example

Sample 1 Americans: $\chi^{2}=0, p=1$				Sample 2 Chinese: $\chi^{2}=0, p=1$			
	Use of chopsticks				Use of chopsticks		
	Yes	No	Total		Yes	No	Total
Allele 1	320	320	640	Allele 1	320	20	340
Allele 2	80	80	160	Allele 2	320	20	340
Total	400	400	800	Total	640	40	680
			here is between Chinese cases"	differen ricans and portion o controls"			

Population stratification: chopstick example

Sample 1 Americans: $\chi^{2}=0, p=1$				Sample 2 Chinese: $\chi^{2}=0, p=1$			
	Use of chopsticks				Use of	sticks	
	Yes	No	Total		Yes	No	Total
Allele 1	320	320	640	Allele 1	320	20	340
Allele 2	80	80	160	Allele 2	320	20	340
Total	400	400	800	Total	640	40	680

	$\begin{aligned} & \text { Sample } 1+2 \text { = Americans + Chinese: } \\ & \chi^{2}=34.2, p=4.9 \times 10^{-9} \end{aligned}$			
		Use of chopsticks		
-		Yes	No	Total
	Allele 1	640	340	980
	Allele 2	400	100	500
	Total	1040	440	1480

Dealing with population stratification

Ways to deal with population stratification:

- Genomic Control (GC)
- Principal Component Analysis
- Within Family Association
-Mixed Linear Modeling

nature
genetics
Advantages and pitfalls in the application of mixed-model association methods

Jian Yang ${ }^{1,2,8}$, Noah A Zaitlen ${ }^{3,8}$, Michael E Goddard ${ }^{4,9}$, Peter M Visscher ${ }^{1,2,9}$ \& Alkes L Price ${ }^{5-7,9}$

Genomic Control (GC)

- Population stratification can result in higher test statistics (= lower p-values)
- The genomic control method estimates the factor with which the test statistics are inflated due to population stratification $\rightarrow \lambda$
- Dividing by λ cancels this effect out for all SNPs:
- Unadjusted: $\lambda \chi^{2}$
- Adjusted: χ^{2}

Before-and-after adjustment for population stratification

Genomic Control (GC)

- $\boldsymbol{\lambda}$ is measured by dividing the median of the distribution of the chisquare statistics from the actual tests by the median of the chi-square distribution under the null.
- Then, GC applies its correction by dividing the actual association test chisquare statistic results by this λ, thus making these results appropriately more pessimistic.
- GC is too conservative if the trait is highly polygenic (i.e. the median test statistic does not represent the null distribution).
- LD Score regression can be used to estimate a more powerful and accurate correction factor than GC.

Principal Component Analysis (PCA)

- PCA is a statistical method for exploring large number of measurements (e.g., SNPs) by reducing the measurements to fewer principal components (PCs) that explain the main patterns of variation:
- The first PC is the mathematical combination of measurements that accounts for the largest amount of variability in the data.
- The second PC (uncorrelated with the first) accounts for the second largest amount of variability.
- Etc...

Principal components analysis corrects for stratification in genome-wide association studies

Alkes L Price ${ }^{1,2}$, Nick J Patterson ${ }^{2}$, Robert M Plenge ${ }^{2,3}$, Michael E Weinblatt ${ }^{3}$, Nancy A Shadick ${ }^{3}$ \& David Reich ${ }^{1,2}$

Population stratification-allele frequency differences between cases and controls due to systematic ancestry differences-can cause spurious associations in disease studies. We describe a method that enables explicit detection and correction of population stratification on a genome-wide scale. Our method uses principal components analysis to explicitly model ancestry differences between cases and controls. The resulting correction is specific to a candidate marker's variation in frequency across ancestral populations, minimizing spurious associations while maximizing power to detect true associations. Our simple, efficient approach can easily be applied to disease studies with hundreds of thousands of markers.

Principal Component Analysis (PCA)

CEPH/European

Yoruba
Han Chinese Japanese

Principal Component Analysis (PCA)

Fine-scale genetic variation reflects geography

Using PCs in GWAS studies

- Include as covariates in a regression model
- PCs that associate to phenotype very important to include
- Logistic regression sensitive to inclusion of many PCs
- Linear regression more robust
- Mixed linear models can replace PCs with

General linear model (GLM) genetic relatedness (GRM) matrix

- Adding PCs as well still seems to help..

Ancestry differences in Great Britain

- Polygenic scores, before and after regressing out 100 PCs

Phasing and Imputation

Imputation

Impute: "represent as being done, caused, or possessed"

Main goal: Using local Linkage Disequilibrium (LD) patterns to infer the genotype of a SNP not on your array

Main process: Map your GWAS array SNPs to whole-genome sequence data (i.e. "reference panels") to impute SNPs not on your array

Reference panels / Haplotypes

Chapter and verse on human genetic variation

HapMap (haplotype map) Project

270 whole-genome sequenced samples:
30 parent-offspring trios of the Yoruba from Ibadan, Nigeria (YRI) 30 trios of Utah residents with European ancestry (CEU) 45 individuals from Beijing, China (CHB) 45 individuals from Tokyo, Japan (JPT)

The International HapMap Consortium (2005). A haplotype map of the human genome. Nature.

Reference panels / Haplotypes

nature
 the international weekly journal of science

1000 Genomes Project

Phase 1: 1,092 individuals from 14 populations..
Phase 3: 2,504 individuals from 26 populations (~ 500 samples form each 5 continental ancestry groups, with ~ 5 populations for each group)

Population		code	(eopuatoon			Phase 1	Phase 3
African anestry	Esan	${ }_{\text {ESN }}$			A		
Samin	${ }_{\text {Easan }}^{\text {Gambian }}$	${ }_{\text {EsN }}^{\text {End }}$			${ }_{\text {AFPR }}^{\text {AFP }}$		
Lunva in weowe Kenva	Lurva				AFR	${ }^{97}$	
Wende in Sterat Leone	Mende	MsL			AFP		
an man						${ }_{8} 8$	
Atican Caitbean in Butasos	Earaoatan	${ }^{\text {ACB }}$			ank		
People with Aicican Ancesty in Soutwes USA	AticanAmeician sw	asw			AME	${ }^{61}$	${ }^{61}$
	Colombian	alm			AMB		
	Mexcanamemican						
Peruvens in Lima, Peut	Peenum						
Puento Ricans in Pueto fico	Pueto Aican	PUR			AMR	${ }_{55}$	${ }^{104}$
East Asana aneestry							
Chinsese Dai in x xstuangoama, China	Daichinse	${ }_{\text {cox }}$			Eas		
Hanchninsesil Beiligy, China	Han Chinese	${ }^{\text {CHB }}$			${ }_{\text {EAS }}^{\text {Eas }}$	${ }^{97}$	
Suatem Han Chinese	Southen Han C Chinse	${ }^{\text {CHs }}$				${ }^{100}$	
		${ }_{\text {kHV }}^{\text {jpr }}$			${ }_{\text {EAS }}^{\text {EAS }}$	${ }^{89}$	${ }_{99} 9$
European anoesty							
	CEPH	${ }_{\text {CEE }}^{\text {Qab }}$			EUR	${ }^{85}$	
	${ }_{\text {chen }}^{\substack{\text { emimsh } \\ \text { Fimsh }}}$	${ }_{\text {fin }}^{\text {fin }}$			${ }_{\text {EUR }}^{\text {EUR }}$	${ }_{93}^{89}$	${ }_{99}^{91}$
Ibeian Populatios in Spain $^{\text {a }}$	Spanish	${ }^{\text {IBS }}$			EUR	${ }^{14}$	
Tosacanil halala	Tuscan	TsI			EUR	${ }_{98}$	107
	Bengail	EB			SAS		
Oviaratind hanas in Housto, TX, USA	Oviarat	${ }_{\text {Oit }}$			SAS		
${ }^{\text {In man Telug in me uk }}$	Tengu	TU			${ }_{\text {sas }}$		
Sil laman Tamilin the UK	Tami	stu			sAs		
						1092	

The 1000 Genomes Project Consortium (2012). An integrated map of genetic variation from 1,092 human genomes. Nature The 1000 Genomes Project Consortium (2015). A global reference for human genetic variation. Nature.

The Haplotype Reference Consortium (HRC)

nature genetics

A reference panel of 64,976 haplotypes for genotype imputation

The Haplotype Reference Consortium (2016). A reference panel of 64,976 haplotypes for genotype imputation. Nature Genetics.

Linkage disequilibrium

Linkage disequilibrium

Novel variant arises

Linkage disequilibrium

Pool of Chromosomes

Chromosomes are a patchwork of the ancestral haplotypes, but local LD still persists

What is phasing

- In this context it is really Haplotype Estimation
- We take genotype data and try to reconstruct the haplotypes
- Can use reference data to improve this estimation

$$
\frac{\text { ATT }}{\text { CGA }} \frac{\text { ATA }}{\text { CGT }} \frac{\text { AGT }}{\text { CTA }} \frac{\text { AGA }}{\text { CTT }}
$$

Phasing in Eagle

- Input a target sample and a library of reference haplotypes
- Selection of conditioning haplotypes.
- Generation of HapHedge data structure.
- Exploration of the diplotype space.

Diploid genotypes of target sample

Diplotype probability computation

Imputation

All HapMap/1KG Whole genome sequence SNPs

Imputation

All HapMap/1KG Whole genome sequence SNPs

Illumina GWAS array SNPs

Imputation

All HapMap/1KG Whole genome sequence SNPs

Illumina GWAS array SNPs

Affymetrix GWAS array SNPs

Imputation

All HapMap/1KG Whole genome sequence SNPs

Illumina GWAS array SNPs

Affymetrix GWAS array SNPs

Overlap SNPs

Imputation

All HapMap/1KG Whole genome sequence SNPs

Affymetrix GWAS array SNPs

Overlap SNPs

Imputation

All HapMap/1KG Whole genome sequence SNPs

Overlap SNPs

Imputation

All HapMap/1KG Whole genome sequence SNPs

Illumina GWAS array SNPs

Imputation output and performance

SNP INFO file:
Main Metric (Rsq)

SNP	Al1	A12	Freq1	MAF	AvgCall	Rsq G	Genotyped	LooRsq	EmpR	EmpRsq	Dose1	Dose2
1:10583	G	A	0.79288	0.20712	0.79288	-0.00000	-	-	-	-	-	-
1:10611	C	G	0.97889	0.02111	0.97889	$0.00000-$	-	-	-	-	-	
1:13302	C	I	0.86280	0.13720	0.86280	-0.00000	-	-	-	-	-	-
1:13327	G	C	0.96042	0.03958	0.96042	-0.00000	-	-	-	-	-	-
1:95207182	I	C	0.99547	0.00453	0.99547	0.10108	- -	-	-	-	-	
1:95207382	I	T	1.00000	0.00000	1.00000	0.00000	- -	-	-	-	-	
1:95207442	C	I	0.62754	0.37246	0.99999	1.00507 G	Genotyped	0.98810	0.99822	0.99645	0.99484	0.00421
1:95207524	G	A	0.78061	0.21939	1.00000	1.00511 G	Genotyped	1.00059	1.00000	1.00000	0.99924	0.00083
1:95207532:TG_T	R	D	0.78620	0.21380	0.99441	0.97729	- -	-	-	-	-	
1:95207558	C	T	0.99399	0.00601	0.99399	0.05165	- -	-	-	-	-	
1:95207633	A	C	0.93366	0.06634	0.99998	1.00482 G	Genotyped	0.94847	0.99901	0.99802	0.99621	0.00372
1:95207846	G	T	0.98937	0.01063	0.98942	0.31316	- -	-	-	-	-	

Imputation quality evaluation

Minimac hides each of the genotyped SNPs in turn and then calculates 3 statistics:

- looRSQ - this is the estimated rsq for that SNP (as if SNP weren't typed).
- empR - this is the empirical correlation between true and imputed genotypes for the SNP. If this is negative, the SNP alleles are probably flipped
- empRSQ - this is the actual R2 value, comparing imputed and true genotypes

These statistics can be found in the *.info file
Be aware that, unfortunately, imputation quality statistics are not directly comparable between different imputation programs ($\mathrm{MaCH} / \mathrm{minimac}$ vs. Impute vs. Beagle etc.)

Imputation output and performance

Phasing/Imputation software

- Imputation programs
- IMPUTE2
https://mathgen.stats.ox.ac.uk/impute/impute_v2.html
- MaCH / minimac
http://genome.sph.umich.edu/wiki/Minimac
- Also need to Phase data to distinguish haplotypes
- Shapeit
www.shapeit.fr
- Beagle
http://faculty.washington.edu/browning/beagle/beagle.htm/
- Eagle / Eagle2
https://data.broadinstitute.ora/alkesqroup/Eaqle/
- Overall a very computationally expensive process

Imputation Services - Michigan

https://imputationserver.sph.umich.edu/index.htm|\#!

Michigan Imputation Server

Free Next-Generation Genotype Imputation Service

Imputation Services - Sanger

https://imputation.sanger.ac.uk/

Sanger Imputation Service

This is a free genotype imputation and phasing service provided by the Wellcome Sanger Institute. You can upload GWAS data in VCF or 23andMe format and receive imputed and phased genomes back. Click here to earn more and follow us on Twitter

Before you start
Be sure to read through the instructions. You will need to set up a free account with Globus and have Globus Connect running at your institute or on your computer to transfer files to and from the service.
Ready to start?
If you are ready to upload your data, please fill
in the details below to register an imputation
and/or phasing job. If you need more
information, see the about page. See also our
Privacy and Security statement.
Full name
Organisation
Email address
What is this ©
Globus user identity

News

30/1/2017
Support for chromosome X has been added to all pipelines. PBWT has been updated to increase imputation accuracy of dosages and fix some bugs. See ChangeLog.
31/10/2016
New African Genome Resources panel with 9,912 haplotypes (6,230 African) is now available.

11/04/2016

Thanks to EAGLE2, we can now return phased data. The HRC panel has been updated to r1.1 to fix a known issue. See ChangeLog for more details.

Breakout session (5 min)

- Breakout into small groups
- Introduce yourself to everyone
- Person with LATEST letter in their FIRST name will be the note taker
- E.g. Zenia is the note taker, not Aaron
- E.g. Abel is the note taker, not Aaron
- Ask any questions you have:
- "I didn't understand what meant"
- "I'm confused by the concept of phasing"
- Note takers relay unanswered questions from the breakout session

Lecture Format

- Part 1 (~40 minutes)

Goals of GWAS
What does the data look like?

- GWAS Quality Control (QC)
- Part 2 (~ 40 minutes)

Relatedness checking

- Part 3 (~ 40 minutes)
- Association testing
- Meta-analysis
- Polygenic Scoring
- 5 min breakout session
- Preparation for module 3 / additional reading / lingering questions

Association testing

Association testing

- Main question: Does the phenotype examined associate/correlate with the genetic variant?

Linear Regression Equation

$$
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\varepsilon_{i}
$$

Logistic Regression Equation

$$
\ln \left(\frac{p_{i}}{\left(1-p_{i}\right)}\right)=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}
$$

Tests of SNP association

- Case/control:
- Chi-square test on contingency table
- Fisher's exact test
- Cochran-Mantel-Haenszel test
- Cochran-Armitage trend test
- Logistic regression
- Case/control \& quantitative traits:
- Permutation

Chi-square test

- plink --assoc = chi-square test on alleles
- Null hypothesis: alleles are independent of disease state

$$
\chi^{2}=\sum_{i=1}^{n} \frac{\left(O_{i}-E_{i}\right)^{2}}{E_{i}}
$$

- $n=$ the number of allele - disease combinations (= 4)
- $O_{i}=$ an observed frequency
- $E_{i}=$ an expected (theoretical) frequency, asserted by the null hypothesis of no independence between allele and disease
- $X^{2}=$ the test statistic that asymptotically approaches a χ^{2} distribution

Expected case count of allele 1 :
$0.6 * 30=18$
x^{2} stat $=0$

	Cases	Controls	Total
Allele 1	18	12	30
Allele 2	42	28	70
Total	60	40	100

Fisher's exact test

- plink --fisher = Fisher's exact test
- Null hypothesis: alleles are independent of disease state
- Should be used instead of the chi-square test if ≥ 1 cells have ≤ 5 observations.
- More computationally expensive than chisq test

	Cases	Controls	Total
Allele 1	a	b	$\mathrm{a}+\mathrm{b}$

Allele 2

Total

a+c\end{array}\right)}\)

Cochran-Mantel-Haenszel (CMH) test

- plink --mh = Cochran-Mantel-Haenszel test
- Comparable to chi-square test, but within different groups (such as different subpopulations to correct for stratification)

Pop 1	Cases	Controls
Allele 1	a	b
Allele 2	c	d

Pop 2	Cases	Controls
Allele 1	a	b
Allele 2	c	d

$$
\chi_{M H}^{2}=\frac{\left\{/ \sum[a-(a+b)(a+c) / n /-0.5\}^{2}\right.}{\sum(a+b)(a+c)(b+d)(c+d) /\left(n^{3}-n^{2}\right)}
$$

Cochran-Armitage trend test

- plink --model =
- Cochran-Armitage trend test
- Allelic test: D vs d
- Genotypic test: DD vs Dd vs dd
- Test for dominant effect of $\mathrm{D}: ~(D D \& D d) ~ v s ~ d d$
- Test for recessive effect of D : DD vs (Dd \& dd)

Chi-square tests

Cochran-Armitage trend test

- Cochran-Armitage trend test
- Null hypothesis: the line has zero slope
- Does not assume Hardy-Weinberg equilibrium (HWE)
- Assumes that there are additive effects
- More conservative than the chisquare test

	Cases	Controls	Total
AA	11	7	18
Aa	37	25	62
aa	50	39	89
Total	98	71	164

Logistic regression

- plink --logistic = logistic regression (= regression analysis for categorical data)
- A useful way to describe the relationship between one or more risk factors (alleles + covariates) and a binary trait (case/control).
- Allows testing of allelic, genotypic, dominant \& recessive effects.

$$
\ln \left(\frac{P}{1-P}\right)=\alpha+\beta_{1} x_{1}+\beta_{2} x_{2}+\ldots \beta_{i} x_{i}
$$

- Plink gives the p-value and the odds ratio (OR) of the risk factor
- $O R=e^{\beta}$

Case/control odds ratio

- Odds Ratio (OR) = a measure of effect size, describing the strength of association between two binary data values (alleles $1 \& 2$ - case \& control status).

	Cases	Controls
Allele 1	a	b
Allele 2	c	d

- An OR of 1.2 for example, means that the odds (not the probability!) of getting the disease increases with a factor of 1.2 if you carry the risk allele (odds $=\frac{P}{1-P}$).

	Cases	Controls
Allele 1	120	100
Allele 2	100	100

$$
\longrightarrow O R=1.2
$$

Case/control phenotype

- No a priori hypothesis:
- Chi square test genotypic (2×3): --model
- Logistic regression - genotypic (allows covariates): --logistic
- Additive effects:
- Cochran-Armitage test (doesn't assume HWE) (2×2): --model
- Chi square test allelic (large sample size) (2×2): --assoc
- Fisher's exact test allelic (small sample size) (2×2): --fisher
- Logistic regression - allele test (allows covariates): --logistic
- Dominant effects:
- Chi square test genotypic (2×2): --model
- Logistic regression - dominance test (allows covariates): --logistic
- Recessive effects:
- Chi square test genotypic (2×2): --model
- Logistic regression - recessive test (allows covariates): --logistic

Permutation

- This empirical method evaluates how often a given p-value would arise by chance if the study were repeated without any true associations.

Permutation

- How is the empirical p-value calculated?
- (rank of the p-value of the real dataset) / (nr of permutations)

Permutation

- Advantages
- Does not assume that the phenotype is normally distributed
- Does not assume HWE
- Better for rare alleles and small sample sizes
- Empirical p-values can be corrected for multiple testing, while preserving the correlational structure between all SNPs (= less conservative than Bonferroni correction = less false negatives)
- Allows for association analyses within clusters (which allows you to correct for population stratification and other confounding variables)
- Disadvantage:
- It can take a very long time to compute...

Permutation

- Plink can do two kinds of permutation:
- Adaptive: permutations of SNPs that are not likely to be significant are stopped prematurely. The advantage is that the permutation procedure does not have to take as long.
- $\max (T):$ all permutations are performed for all SNPs. The advantage is that this allows for the calculation of a p-value that is corrected for multiple testing.

GWAS Meta-Analysis

Meta-analysis

Goal: Combine separate studies to increase power to discover SNP associations

- Evaluate summary statistics (quicker/lighter)
- Examine potential study bias

Significance - Weighted Z

$$
Z=\frac{\sum_{i=1}^{m} w_{i} Z_{i}}{\sqrt{\sum_{i=1}^{m} w_{i}^{2}}} \quad \text { where } \quad w_{i}=\sqrt{n_{i}} \text { larger sample }=
$$

The test statistic Z_{i} can be obtained from two-tailed p values and the direction of effect, or one-tailed p-values, using the inverse normal distribution function

Effect size - Weighted β

larger sample ->

smaller standard error ->

Test for Heterogeneity Cochran's Q

$$
\begin{aligned}
& \hat{\beta}=\frac{\sum_{i=1}^{m} w_{i} \hat{\beta}_{i}}{\sum_{i-1}^{m} w_{i}} \begin{array}{c}
\text { test of distance from } \\
\text { the weighted mean }
\end{array} \\
& Q=\sum_{i=1}^{m}\left(w_{i}\left(\hat{\beta}_{i}-\hat{\beta}^{2}\right) \sim \chi_{m-1}^{2}\right. \\
& I^{2}=100 \times \frac{Q-(m-1)}{Q}
\end{aligned}
$$

YoungFinns.filtered WGHS all migraine TwinsUK all migraine Rotterdam_all_migraine.filtered NTR_NESDA_all_migraine NFBC
HUNT_All_mig.filtered ERF filtered decode.IHS and self reported.filtered B58C_all_migraine.filtered ATM_selfreported_migraine.filtered ATM_IHS_migraine.filtered ALSPAC_allmigraine German_MO FinTwin Dutch_MO Dutch_MA German_MA _without_overlapping_controls.filtered

Finnish MA excl.filtered 23andMe_V3_migraine_diagnosis_20130618 23andMe_V2_migraine_diagnosis_20130618

All migraine e

Meta-analysis software: METAL

http://www.sph.umich.edu/csg/abecasis/metal/
Documentation can be found at the metal wiki:
https://genome.sph.umich.edu/wiki/METAL

Polygenic Scores

Polygenic scores - adding up the effects

From PGC SCZ wave 3

Polygenic Scores (PGS or PS)

Polygenic Scores capture (part of) someone's genetic "risk" by summing all risk alleles weighted by the effect sizes estimated in a Genome-Wide Association Study (GWAS)

Also known as polygenic risk scores (PRS), genetic risk score (GRS), or genome-wide score (GS)

Polygenic Scores

- By summing the collective effect sizes of many SNPs you can quantify part of the genetic "risk" in an independent dataset
- Polygenic Scores generally improve when adding SNPs that individually didn't reach genome-wide significance

Basic usage

The basic command to generate a score is the --score option, e.g.
| ./plink --bfile mydata --score myprofile.raw
which takes as a parameter the name of a file (here myprofile.raw) that describes the scoring system. This file has the format of one or more lines, each with exactly three fields

> SNP ID
> Reference allele
> Score (numeric)
for example

SNPA	A	1.95
SNPB	C	2.04
SNPC	C	-0.98
SNPD	C	-0.24

These scores can be based on whatever you want. One choice might be the log of the odds ratio for significantly associated SNPs, for example. Then, running the command above would generate a file
plink.profile
with one individual per row and the fields:

[^0]nature

Genome-wide polygenic scores for common

diseases identify individuals with risk equivalent to monogenic mutations

Amit V. Khera ${ }^{1,2,3,4,5}$, Mark Chaffin $\odot^{4,5}$, Krishna G. Aragam ${ }^{1,2,3,4}$, Mary E. Haas ${ }^{4}$, Carolina Roselli ${ }^{4}{ }^{4}$, Seung Hoan Choi ${ }^{4}$, Pradeep Natarajan $\odot^{2,3,4}$, Eric S. Lander ${ }^{4}$, Steven A. Lubitz $\odot^{2,3,4}$, Patrick T. Ellinor $\odot^{\text {2,3,4 }}$ and Sekar Kathiresan $\odot^{1,2,2,4 \star}$
 Fig. 2 | Risk for CAD according to GPS. a, Distribution of GPS ${ }_{C A D}$ in the UK Biobank testing dataset ($n=288,978$). The x axis represents GPS $_{\text {CAD }}$, with values scaled to a mean of 0 and a standard deviation of 1 to facilitate interpretation. Shading reflects the proportion of the population with three-, four-, and fivefold increased risk versus the remainder of the population. The odds ratio was assessed in a logistic regression model adjusted for age, sex, genotyping array, and the first four principal components of ancestry. b, GPS CAD percentile among CAD cases versus controls in the UK Biobank testing dataset. Within each boxplot, the horizontal lines reflect the median, the top and bottom of each box reflect the interquartile range, and the whiskers reflect the maximum and minimum values within each grouping. c, Prevalence of CAD according to 100 groups of the testing dataset binned according to the percentile of the GPS ${ }_{C A D}$.
nature
neuroscience
Polygenic risk scores for schizophrenia and bipolar disorder predict creativity
Robert A Power ${ }^{1,2}$, Stacy Steinberg ${ }^{1}$, Gyda Bjornsdottir ${ }^{1}$, Cornelius A Rietveld ${ }^{3}$, Abdel Abdellaoui ${ }^{4}$, Michel M Nivard ${ }^{4}$, Magnus Johannesson ${ }^{5}$, Tessel E Galesloot ${ }^{6}$, Jouke J Hottenga ${ }^{4}$, Gonneke Willemsen ${ }^{4}$, David Cesarini ${ }^{7}$, Daniel J Benjamin Patrik K E Magnusson ${ }^{9}$, Fredrik Ullén ${ }^{10}$, Henning Tiemeier ${ }^{11}$, Albert Hofman ${ }^{11}$, Frank J A van Rooij ${ }^{11}$, G Bragi Walters ${ }^{1}$, Engibert Sigurdsson ${ }^{12,13}$, Thorgeir E Thorgeirsson ${ }^{1}$
Andres Ingason ${ }^{1}$, Agnar Helgason ${ }^{1,13}$, Augustine Kong ${ }^{1}$,
Lambertus A Kiemeney ${ }^{6}$, Philipp Koellinger ${ }^{14}$, Dorret I Boomsma ${ }^{4}$, Daniel Gudbjartsson ${ }^{1}$, Hreinn Stefansson ${ }^{1}$ \& Kari Stefansson ${ }^{1,13}$

Breakout session (5 min)

- Breakout into small groups
- Introduce yourself to everyone
- Person with LATEST letter in their LAST name will be the note taker
- E.g. Zerick is the note taker, not Adelson
- E.g. Abraham is the note taker, not Adelson
- Ask any questions you have:
- "I didn't understand what meant"
- "I'm confused by what is being added in the polygenic score"
- Note takers relay unanswered questions from the breakout session

Lecture Format

- Preparation for module 3 / additional reading / lingering questions

For the next module...

- Preparation for module 3
- Access to ATGU wiki:
- https://sites.google.com/a/broadinstitute.org/atgu
- Useful UNIX commands
- https://sites.google.com/a/broadinstitute.org/atgu/getting-started/useful-unix-commands
- Logging onto Broad servers:
- https://sites.google.com/a/broadinstitute.org/atgu/getting-started
- Additional reading
- Papers behind most of the methods used in statistical genetics:
- https://sites.google.com/a/broadinstitute.org/atgu/core-publication-list
- 10 years of GWAS discovery: Visscher_GWAS10yrs_AJHG_2017.pdf
- Genetic architecture of complex traits: Timpson_GeneticArch_NRG_2017.pdf
- Final questions??

[^0]: FID Family ID
 IID Individual ID
 PHENO Phenotype for that
 CNT Number of non-missing SNPs used for scoring
 The number of named alleles
 Total score for that individual

