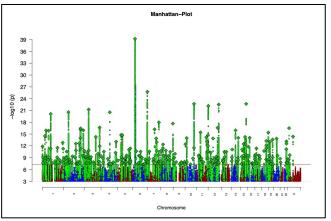
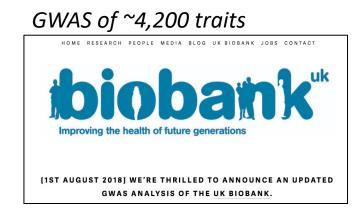
Data QC / cleaning in Genome-Wide Association Studies (GWAS)

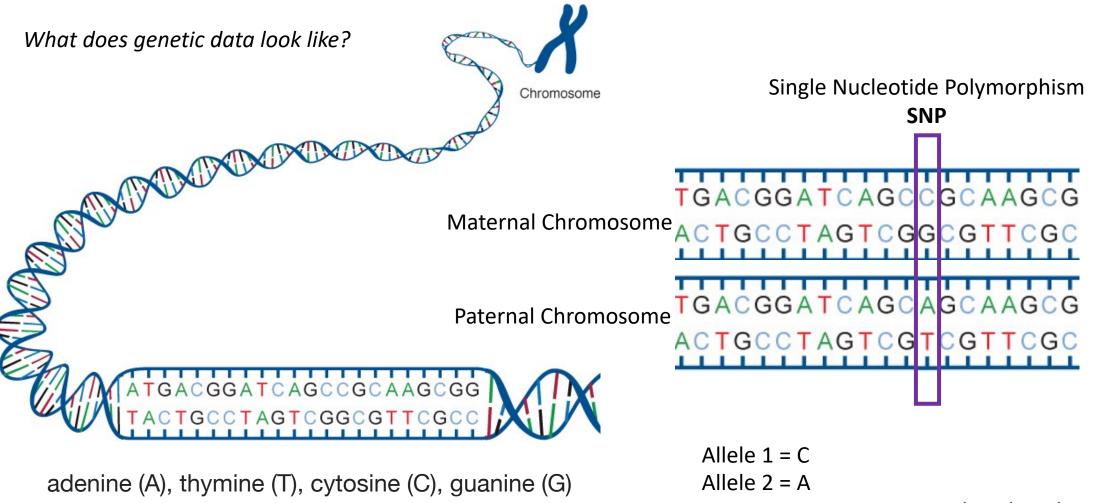
2023 Statistical Genetics workshop Presenter: Daniel Howrigan Data group leader – Neale Lab (MGH, Broad Institute)

Slides adapted from previous workshop presenters: Lucia Colodro Conde (QIMR), Katrina Grasby (QIMR), Shaun Purcell (HMS)

With help from: John Kemp (University of Queensland) and Daniel Gustavson (IBG)

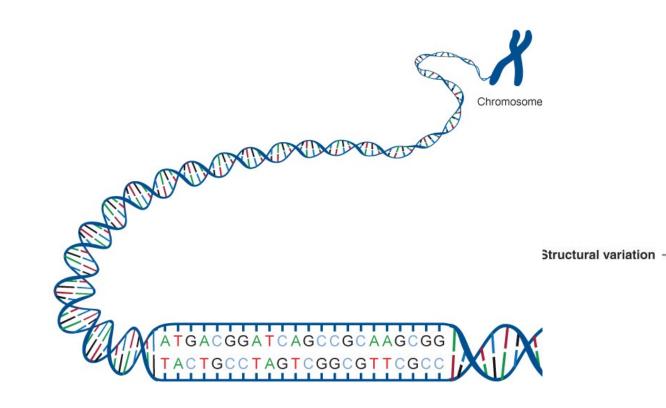

Session Outline – genetic data QC


- Lecture portion (~40 minutes)
 - Goals of GWAS
 - What does genetic data look like?
 - GWAS Quality Control (QC)
- Practical portion (~40 minutes)
 - Viewing genotype data
 - Sample and SNP QC
 - Relatedness checking
 - Principal components analysis (PCA)


Goals of Genome Wide Association Studies

- Go from trait heritability towards biological mechanism
 - What genes/genetic variants drive heritable differences?
- Genome-wide interrogation
 - Moving away from candidate gene studies
 - Technological advancement and dropping cost
- Flexible application of study design
 - All heritable traits can be studied
 - Biological/mathematical properties of DNA quite robust

GWAS of Schizophrenia



Bi-allelic combinations = C/C, C/A, A/A

Genetic variation: differences in the sequence of DNA among individuals. Mutation: a newly arisen variant

Examples of genetic variation

Single nucleotide

substitutions

Sequence variation

- insertions | 'indels'
- deletions

2bp to 1,000bp

- VNTRs: microsatellites, minisatellites
- indels
- inversions
- di-, tri-, tetranucleotide repeats

1kb to submicroscopic

- copy number variants
- segmental duplications
- inversions, translocations
- copy number variant regions
- microdeletions, microduplications

Microscopic to subchromosomal

- segmental aneusomy
- chromosomal deletions (losses)
- chromosomal insertions (gains)
- chromosomal inversions
- intrachromosomal translocations
- chromosomal abnormality
- heteromorphisms
- fragile sites

Whole chromosomal to whole genome

- interchromosomal translocations
- ring chromosomes, isochromosomes
- marker chromosomes
- aneuploidy

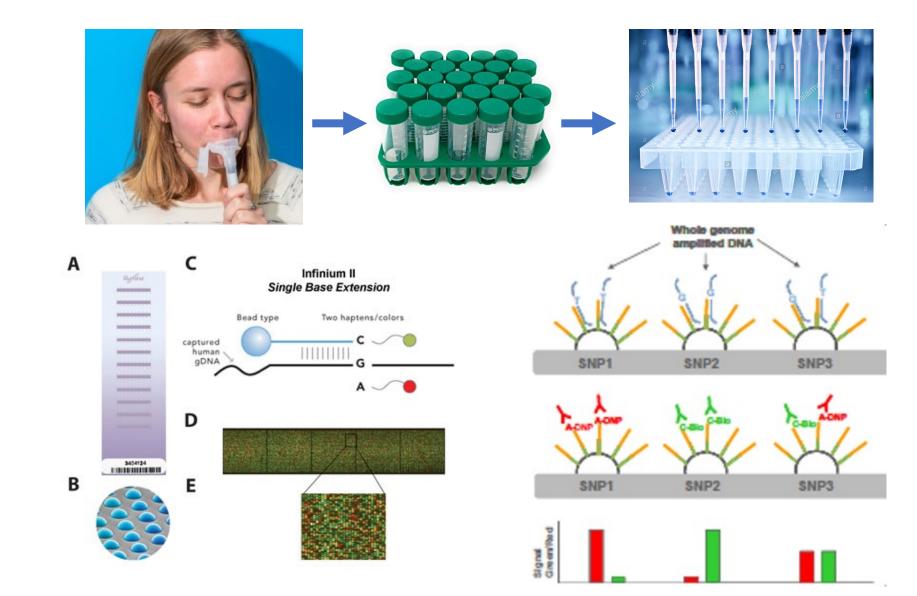
aneusomy

Genotyping on a chip

<u>Affymetrix:</u>

6.0 chip

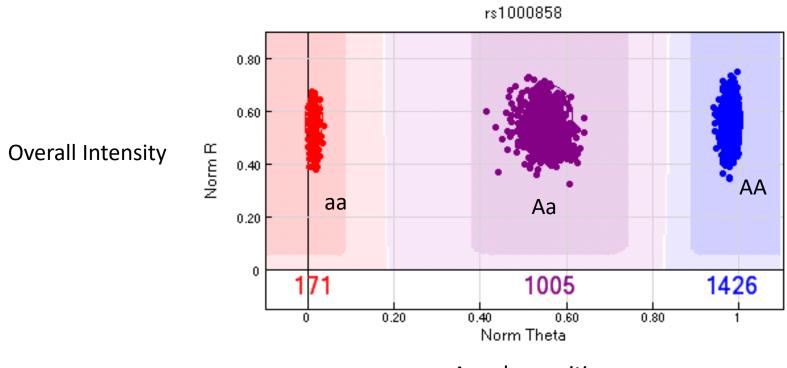
>900,000 SNPs CNV probes 82% coverage CEU HapMap Accuracy 99.90%


Illumina:

Human1M BeadChip

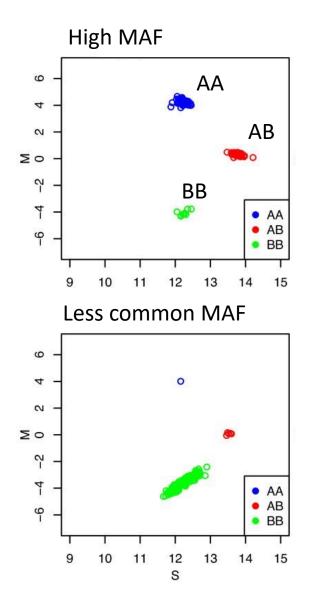
>1 million SNPs CNV probes 95% coverage CEU HapMap Accuracy 99.94%

From DNA to data

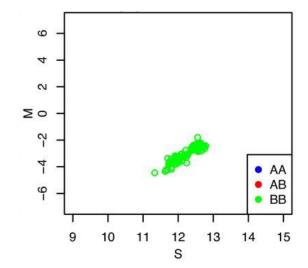

Good SNP (Illumina chip example)

Raw Intensity rs1000858 rs1000858 8000 0.80 T/T T/T 6000 Norm Intensity (B) 0.60 Intensity (B) T/G T/G 4000 0.40 2000 0.20 G/G G/G - 0 0 10000 2000 4000 6000 8000 12000 14000 16000 18000 0 0.20 0.40 0.80 1.20 1.40 1.60 0 0.60 1.80 Intensity (A) Norm Intensity (A)

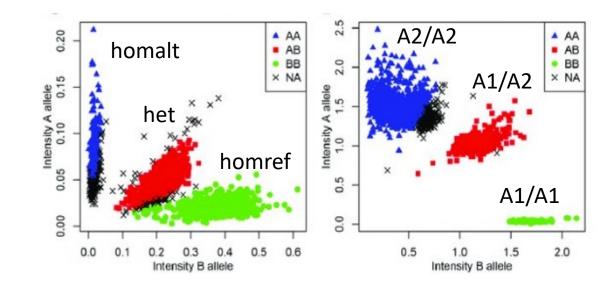
Normalized Intensity


Each dot is an individual genotype

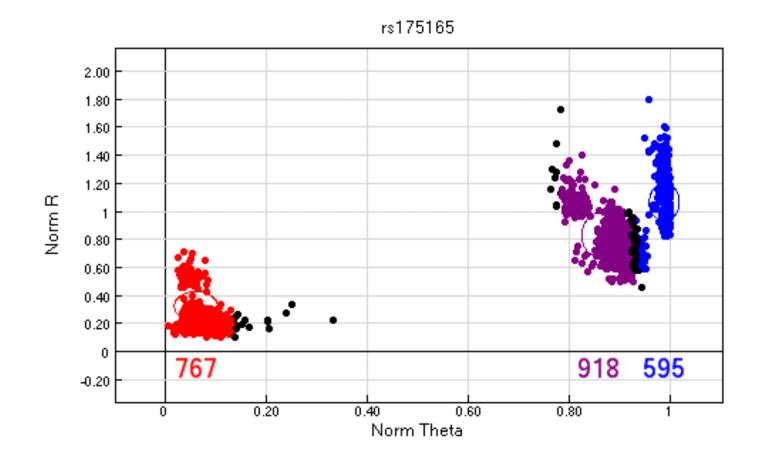
Same SNP, different view


Angular position

SNPs with different allele frequencies

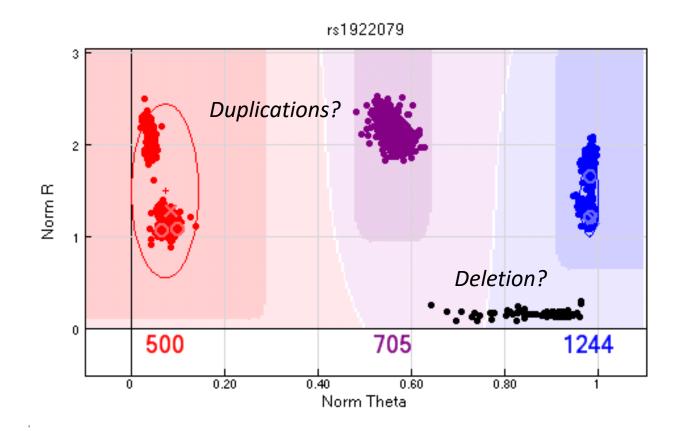

MAF = Minor Allele Frequency

- "Common SNPs" = MAF > 5%? 1%? 0.1?
- "Low Frequency SNPs" = MAF < 1%
- "Ultra-rare variants" = MAF < 1e5 (1 in 100k)

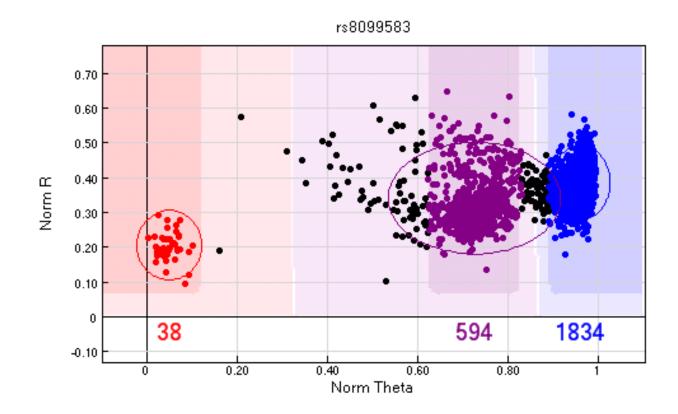


Monoallelic in the sample

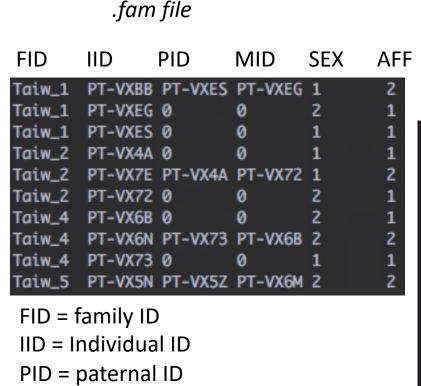
Bad SNP call examples



Bad SNP



12


Another bad SNP

Another bad SNP

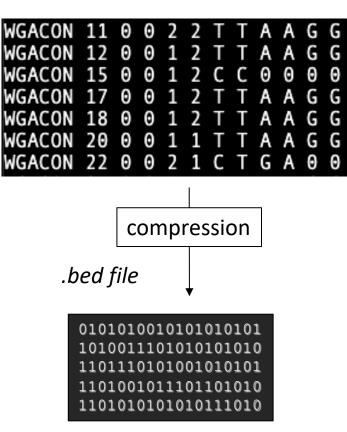
PLINK data format of GWAS data

Samples

- MID = maternal ID
- AFF = affection status
- 1 = control
- 2 = case
- -9 or 0 = unknown

Genetic variants *.bim file (or .map file)*

CHR	SNP ID	CM	POS	A1	A2
1	GSA-rs114420996	0	58814	A	G
1	GSA-rs9283150	0	565508	A	G
1	GSA-rs9326622	0	567092	с	т
1	GSA-1:726912	0	726912	G	А
1	GSA-rs116587930	0	727841	A	G
1	rs3131972	0	752721	G	A
1	rs12567639	0	756268	A	G
1	GSA-rs114525117	0	759036	A	G
1	rs12127425	0	794332	A	G
1	GSA-rs79373928	0	801536	G	т
1	GSA-rs72888853	0	815421	с	т
1	rs28444699	0	830181	G	A
1	GSA-1:830731	0	830731	с	т
1	GSA-rs116452738	0	834830	A	G
1	GSA-rs72631887	0	835092	G	т
1	rs4970383	0	838555	A	С


CHR = chromosome

POS = position

CM = Centimorgan (often unused)

A1 = 0 allele A2 = 1 allele

Genotype data .ped file

GWAS QC

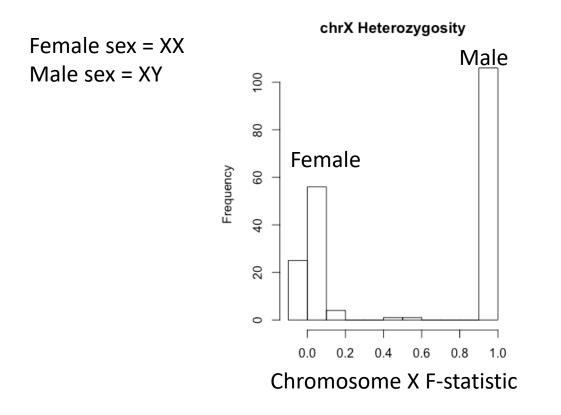
GWAS Quality Control (QC)

- GOAL: Remove bad samples/SNPs, keep good samples/SNPs
- Preliminary strategies (first pass)
 - Poorly genotyped samples / SNP markers
 - Potential genotype/phenotype mismatches
 - Deviation away from expected heterozygosity
 - Related or duplicated samples (population-based data)
- Follow-up strategies
 - Batch effects
 - Quality differences between datasets
 - Comparison with reference data
 - ...and more

Sample QC

- Poorly genotyped individuals
 - Poor quality DNA (high number of failed SNP calls)
 - Contaminated DNA (unusual levels of heterozygosity)
- Reporting error
 - Indications of sample mix-up (sex check or ancestry match)
- Related individuals
 - Family-based and population-based samples require different experimental designs
 - Related individuals can bias test statistics across the whole-genome
 - In family-based association: Mendelian errors used as QC

SNP QC


- Poorly genotyped SNPs
 - Poor primer design / nonspecific DNA binding (high number of failed SNP calls)
 - Poor clustering of genotype intensities (deviation from HWE)
 - Mendelian errors (if family-based data available)
 - Uninformative SNPs (too rare or mono-allelic)
- Follow-up on association signals
 - No QC protocol will eliminate all instances of genotyping error
 - Re-analyze original intensity of significant associations (whenever possible)
 - For meta-analysis, examining heterogeneity of SNP effect

Preliminary QC steps

- **SAMPLE**: Sex-check (chr X heterozygosity)
- SNP: Genotyping Call Rate (genotypes missed in individuals)
- **SAMPLE**: Sample Call Rate (individuals missing genotypes)
- **SNP**: Hardy-Weinberg Equilibrium
- **SAMPLE**: Proportion of Heterozygosity
- **SAMPLE/SNP**: Mendelian errors
- **SAMPLE**: Genetic Relatedness

Confirming genetic sex

• Primary question: Is the sample-level data correctly matching the SNP data?

Example .sexcheck file from PLINK (male=1, female=2)

FID	IID	PEDSEX	SNPSEX	STATUS	F	
т304	T30411	1	1	OK	0.9857	
A0641C	06410021C	1	1	OK	0.9841	
т06013	T2601310	2	2	OK	-0.06164	
т01533	T2153321	1	1	OK	0.9841	
т330	Т33021	1	1	OK	0.9867	
т191	т19120	2	2	OK	0.01155	
т329	Т32911	1	1	OK	0.9839	
T07981	T2798111	1	1	OK	0.9822	
A0601C	06010021C	1	1	OK	0.9858	
A1008C	10080011C	1	1	OK	0.9817	
A0880C	08800331C	1	1	OK	0.9818	
T00894	T2089420	2	2	OK	0.01927	
A0701C	07010011C	1	1	OK	0.9807	
T02911	T2291121	1	1	OK	0.9851	
T00588	T2058811	1	2	PROBLEM	-0.3396	
A0805C	08050031C	1	1	OK	0.9821	
т07755	т2775520	2	2	OK	-0.09906	
т03676	T2367611	1	1	OK	0.9845	
т082	T08220	2	1	PROBLEM	0.9833	

SNP genotyping call rate ("missingness")

Bad SNP design, poor clustering...

- Usually done iteratively
 - Remove SNPs with < 95% call rate
 - Run sample QC
 - Remove SNPs with < 98% call rate
- For case/control data
 - Look at difference in genotyping rate
 - Threshold usually at > 2% call rate difference

Example .Imi	ss file from	PLINK
--------------	--------------	-------

CHR	SNP	N_MISS	N_GENO	F_MISS
1	rs12565286	6	200	0.03
1	rs12124819	8	200	0.04
1	rs4970383	0	200	0
1	rs13303118	0	200	0
1	rs35940137	0	200	0
1	rs2465136	1	200	0.005
1	rs2488991	0	200	0
1	rs3766192	0	200	0
1	rs10907177	0	200	0

Example .missing file from PLINK

CHR	SNP	F_MISS_A	F_MISS_U	P
1	rs12565286	0.03125	0.03093	1
1	rs12124819	0.05208	0.03093	0.4974
1	rs2465136	0	0.01031	1
1	rs4970357	0	0.02062	0.4974
1	rs11466691	0	0.01031	1
1	rs11466681	0.01042	0.01031	1
1	rs34945898	0.03125	0	0.1211
1	rs715643	0.05208	0.02062	0.2787
1	rs13306651	0.01042	0.03093	0.6211

Sample genotyping call rate

Low quality DNA dearadation lab error contamination

Example .imiss file from PLINK

Low quality Divit, acgradation, has crief, containination	FID	IID	MISS_PHENO	N_MISS	N_GENO	F_MISS	
	NA20505	NA20505	N	122	100310	0.001216	
	NA20504	NA20504	N	1406	100310	0.01402	
	NA20506	NA20506	N	204	100310	0.002034	
	NA20502	NA20502	N	847	100310	0.008444	
	NA20528	NA20528	N	219	100310	0.002183	-
Missing genotypes	NA20531	NA20531	N	96	100310	0.000957	
	NA20534	NA20534	N	338	100310	0.00337	-
To generate a list genotyping/missingness rate statistics:	NA20535	NA20535	N	182	100310	0.001814)34 44 83 57 37 14
To generate a list generyping/missingness rate statistics.	NA20586	NA20586	N	214	100310	0.002133	

plink --file data --missing

This option creates two files:

plink.imiss
plink.lmiss

which detail missingness by individual and by SNP (locus), respectively. For individuals, the format is:

FID	Family ID
IID	Individual ID
MISS_PHENO	Missing phenotype? (Y/N)
N_MISS	Number of missing SNPs
N_GENO	Number of non-obligatory missing genotypes
F_MISS	Proportion of missing SNPs

http://zzz.bwh.harvard.edu/plink/summary.shtml#missing

Hardy-Weinberg Equilibrium (HWE)

- A genetic variant is said to be in HWE if the genotype proportions can be predicted by the allele frequencies in the following way:
 - If:
 - f(A1) = p• f(A2) = q p + q = 1 Example: In C/T SNP terms: p = 0.2 q = 0.8 C allele freq. = 20% T allele freq. = 80%
 - Then:
 - $f(A1/A1) = p^2$ • $f(A1/A1) = p^2$ $p^2 = 0.04$ 2pq = 0.32C/C freq. = C/T freq. =
 - $f(A1/A2) = 2pq p^2 + 2pq + q^2 = 1$
 - $f(A2/A2) = q^2$

- C allele freq. = 20% T allele freq. = 80% C/C freq. = 4% C/T freq. = 32%
 - T/T freq. = 64%

q2 = 0.64

Testing for deviation from HWE

Deviations from HWE can be caused by:

- Non-random mating (inbreeding, assortative mating, ...)
- Population stratification
- Mutation
- Limited population size
- Random genetic drift
- Gene flow
- Genotyping errors
- Selection (→ may be due to true association!)

So only extreme deviation from HWE ($p < 10^{-6}$) is worrisome.

Example .hardy output in PLINK

CHR	SNP	TEST	A1	A2	GENO	O(HET)	E(HET)	P
1	rs12565286	ALL	С	G	0/17/170	0.09091	0.08678	1
1	rs12565286	AFF	С	G	0/6/87	0.06452	0.06243	1
1	rs12565286	UNAFF	С	G	0/11/83	0.117	0.1102	1
1	rs12124819	ALL	G	A	0/77/108	0.4162	0.3296	6.919e-05
1	rs12124819	AFF	G	A	0/41/50	0.4505	0.3491	0.004878
1	rs12124819	UNAFF	G	A	0/36/58	0.383	0.3096	0.02001
1	rs4970383	ALL	A	С	10/68/115	0.3523	0.352	1
1	rs4970383	AFF	A	С	3/36/57	0.375	0.3418	0.5488
1	rs4970383	UNAFF	A	С	7/32/58	0.3299	0.3618	0.401

Proportion of heterozygosity (Fhet)

Inbreeding coefficients

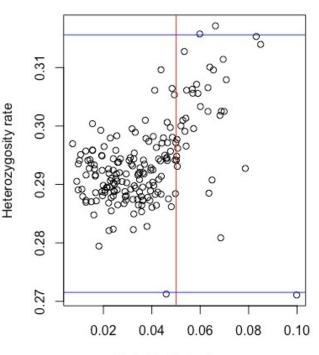
Given a large number of SNPs, in a homogeneous sample, it is possible to calculate inbreeding coefficients (i.e. based on the observed versus expected number of homozygous genotypes).

plink --file mydata --het

which will create the output file:

plink.het

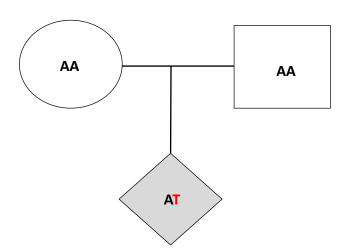
which contains the fields, one row per person in the file:


FID	Family ID
IID	Individual ID
O(HOM)	Observed number of homozygotes
E(HOM)	Expected number of homozygotes
N (NM)	Number of non-missing genotypes
F	F inbreeding coefficient estimate

This analysis will automatically skip haploid markers (male X and Y chromosome markers).

Note With whole genome data, it is probably best to apply this analysis to a subset that are pruned to be in approximate linkage equilibrium, say on the order of 50,000 autosomal SNPs. Use the --indep-pairwise and --indep commands to achieve this, described here.

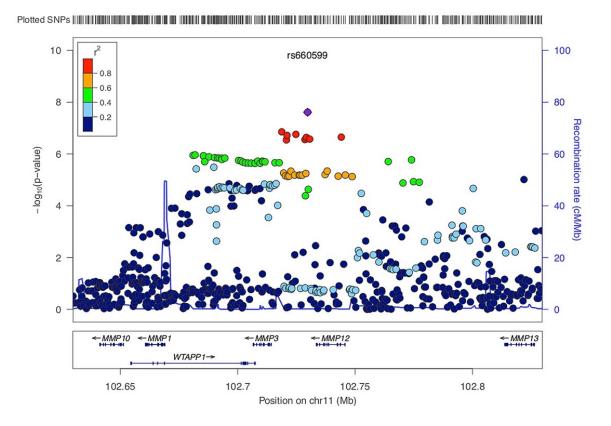
Note The estimate of F can sometimes be negative. Often this will just reflect random sampling error, but a result that is strongly negative (i.e. an individual has *fewer* homozygotes than one would expect by chance at the genome-wide level) can reflect other factors, e.g. sample contamination events perhaps.


http://zzz.bwh.harvard.edu/plink/ibdibs.shtml#inbreeding

Individual missingness

Mendelian errors

- Requires parent-offspring data
- Similar to genotyping rate, can be examined at sample and SNP level
- High sample-level mendel error rate
 - Parental uncertainty
- High SNP-level mendel error rate
 - Poor genotype quality


Mendel errors													
mendel ['summaries-only']													
mend	mendel-duos												
mend	mendel-multigen												
	l acono the datas	at for Mondol or	roro writing o oc	t of reports to									
	I scans the datas												
			· ·	mitochondrial data are ignored. The errors are nor) allele and '2' refers to A2:									
Classifie	u as ioliows, whe		e AT (usually IIII	ior) allele and 2 telets to A2.									
Code	e Pat. genotype	Mat. genotype	Child genotype	Samples implicated									
1	11	11	12	all									
2	22	22	12	all									
3	22	11/12/missing	11	father, child									
4	11/12/missing	22	11	mother, child									
5	22	22	11	child									
6	11	12/22/missing	22	father, child									
7	12/22/missing	11	22	mother, child									
8	11	11	22	child									
9	(Xchr male)	11	22	mother, child									
10	(Xchr male)	22	11	mother, child									

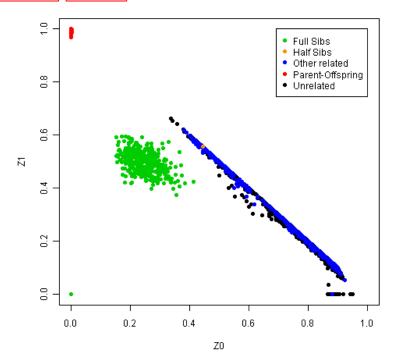
https://www.cog-genomics.org/plink/1.9/basic_stats#mendel

de novo mutation is a type of mendelian error

Linkage disequilibrium (LD) allows us to be more robust with our QC protocols

- TL/DR: "Nearby SNPs are correlated"
- Properties of linkage disequilibrium reduce the loss of signal sensitivity when removing SNPs
- Strict multiple testing correction often requires very large samples no single sample will drive a signal
- LD <u>must</u> be taken into account when examining genetic relatedness, population stratification, and interpreting association

Genetic relatedness using Identity-By-Descent (IBD) calculation


- Question: How much does a pair of samples share 0, 1, or both alleles?
- Identical twins: Shares both alleles across entire genome (barring mutation events)
- Requires using LD-pruned SNPs for accurate estimates
 Want each SNP to be an "independent" marker
- Used to both "confirm" and "filter" related individuals

Checking genotype relatedness across samples

Example of .genome file in PLINK

_														
	FID1	IID1	FID2	IID2	RT	EZ	z0	Z1	Z2	PI_HAT	PHE	DST	PPC	RATIO
	NA20505	NA20505	NA20506	NA20506	UN	NA	0.9872	0.0000	0.0128	0.0128	-1	0.771435	0.3446	1.9712
	NA20505	NA20505	NA20502	NA20502	UN	NA	0.9888	0.0096	0.0016	0.0064	-1	0.770233	0.3950	1.9808
	NA20505	NA20505	NA20528	NA20528	UN	NA	0.9733	0.0267	0.0000	0.0133	-1	0.770068	0.2922	1.9606
	NA20505	NA20505	NA20531	NA20531	UN	NA	0.9789	0.0205	0.0006	0.0109	-1	0.770976	0.7407	2.0479
	NA20505	NA20505	NA20534	NA20534	UN	NA	0.9602	0.0398	0.0000	0.0199	-1	0.772123	0.3046	1.9631
	NA20505	NA20505	NA20535	NA20535	UN	NA	0.9650	0.0350	0.0000	0.0175	-1	0.771054	0.6510	2.0285
	NA20505	NA20505	NA20586	NA20586	UN	NA	0.9728	0.0272	0.0000	0.0136	-1	0.770687	0.4281	1.9869
	NA20505	NA20505	NA20756	NA20756	UN	NA	0.9675	0.0325	0.0000	0.0163	-1	0.770762	0.6902	2.0365
	NA20505	NA20505	NA20760	NA20760	UN	NA	0.9344	0.0656	0.0000	0.0328	0	0.770978	0.8856	2.0904

	Probability of Sharing IBD Alleles								
Relative Pair	π_0	π1	π_2						
MZ Twins	0	0	1						
Full Sibs	0.25	0.50	0.25						
Parent-Offspring	0	1	0						
First Cousin	0.75	0.25	0						
Grandparent- Grandchild	0.50	0.50	0						
Half-Sibs	0.50	0.50	0						
Avuncular	0.50	0.50	0						

Using genetic relatedness estimates

- Confirm unrelated or "population-based" sample ascertainment
 - Filter out related samples (pi-hat > 0.2 often used)
 - "Cryptic relatedness" related individuals identified in "unrelated" sample
- Confirm family structure (pedigree)
 - Ensure parent-child and sibling relationship
- Watch out for distinct ancestries
 - Can skew IBD estimates and incorrectly identify recent relatedness
 - PCrelate more robust to these patterns <u>https://rdrr.io/bioc/GENESIS/man/pcrelate.html</u>

Session Outline – genetic data QC

- Practical portion (~40 minutes)
 - Data checking
 - Sample and SNP QC
 - Relatedness checking
 - Principal components analysis (PCA)
- Go to: workshop.colorado.edu
 - Slides + practical: /faculty/daniel/2023/QC
 - Terminal: workshop.colorado.edu/ssh
 - **Rstudio:** workshop.colorado.edu/rstudio

Script that you will be working through:

QC_practical_statgenWorkshop2023.txt

Full path: /faculty/daniel/2023/QC/QC_practical_statgenWorkshop2023.txt

Walk through this script and copy/paste commands to the ssh command line

Qualtrics version: https://ucsas.qualtrics.com/jfe/form/SV_eWpdYL7srw7Cy6W

Answers to be filled out by a single table member

See the ISGW forum for these and other useful links to start your practical session:

https://isgw-forum.colorado.edu/

1.1 Creating workspace

Create day1 subdirectory (-p creates full path into new directories)
mkdir -p ~/day1/QC

traverse into new subdirectory
cd ~/day1/QC

1.2 Copying over genetic dataset

Copy the files to your working subdirectory
cp /faculty/daniel/2023/QC/* .

Check you have the required files:

ls –l

HM3.bed # HM3.bim # HM3.fam # QC_practical_BoulderWorkshop2023.R # QC_practical_BoulderWorkshop2023.sh # QC_practical_BoulderWorkshop2023.txt # cc.ped # cc.map ## === Main QC ===

STEP 1. Data and Formats

STEP 2. Check for reported/genotype sex discrepancies

STEP 3. Obtain information on individuals missing SNP data

STEP 4. Variant QC: SNPs missing data; MAF; Hardy-Weinberg

STEP 5. Sample QC: genotype call rate and heterozygosity

STEP 6. LD-pruned SNP set

STEP 7. Sample QC: sex check filtering using LD-pruned SNP set

STEP 8. Sample QC: Checking for cryptic relatedness