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Biases in Polygenic Risk Scores

Simulate AFR, EAS, and 
EUR individuals. Assign 
causal effect sizes globally.
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• Simulation design: We simulated GWAS-scale 
data (200k samples/population, 5% prevalence →10k 
cases, 10k controls with liability threshold model) with 
chr20 recombination map (~65 Mb), selecting causal 
variants globally (EUR, EAS, AFR), but GWAS 
participants only from Europe.  Causal effect sizes 
drawn from:

β ~ N(0, h2/m)
• True vs inferred risk: Across simulations, true risk 
does not differ across populations. Inferred risk, 
however, varies most in Europe, then Asia, and least 
in Africa.
• Risk biases across populations: Within a given 
simulation, true vs inferred risk can occur in any 
direction from drift alone. Correction with principal 
components alone (e.g. as typical in GWAS) will be 
insufficient to correct these biases.
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Abstract
• GWAS are heavily biased 
towards European populations. 
• Generalizability of Eurocentric 
GWAS to diverse/admixed 
populations most likely depends on 
LD and allele frequencies.
• Genetic risk prediction using 
standard approaches across global 
populations exhibits biases not 
explained by divergence or natural 
selection.
• Our large, coalescent-based 
simulations quantitatively 
demonstrate that summary 
statistics derived from European 
populations generalize poorly to 
non-European populations.
• We are developing novel 
statistical methods that model LD 
from multiple populations to 
improve the generalizability of 
genetic risk prediction.

• Height bias: Predicted 
decrease with distance 
from Europe, contradicting 
anthropometric evidence.
• Schizophrenia 
prevalence: similar across 
globe, but Africans 
predicted to have lower 
risk.
• T2D conflicting order: 
Predicted risk depends on 
population summary 
statistics.

GWAS Transferability Across Populations

• Empirical example (schizophrenia): 
Psychiatric Genetics Consortium GWAS
◦ 37k and 113k European cases/controls
◦ 13k and 16k East Asian cases/controls  
 (leave-one-out prediction strategy) 
Despite a 3-fold larger European GWAS, 
prediction accuracy is higher in East 
Asians with matched summary statistics.
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Analogous to a 
continuous-state 
Hidden Markov Model

Hidden states: causal 
effect sizes (β)
Observed states: 
estimated effect sizes
Linear operator is a 
function of LD (R)

B
ia

s In GWAS: y = xβ + ε

where β is causal effect size and

β̂ is estimated effect size.

E[β̂j,1] = βj +

m∑

i=1

βi ∗Ri,j,1

R matrix is unsquared correlation matrix (LD)

New Polygenic Risk Prediction Methods

Builds off recent previous work on 
Multi-Trait Analysis of GWAS 
(MTAG): can be applied to 
summary statistics, accounts for 
sample overlap, estimates 
trait-specific effects.
Compute covariance of estimated 
effects with pop-specific LD matrix:

Assuming same causal variant:

Cov[β̂j,1, β̂j,2] = Cov[βj +

m∑

i=1

βi ∗Ri,j,1,βj +

m∑

i=1

βi ∗Ri,j,2]

Cov[β̂j,1, β̂j,2] = 1 + Cov[Ri,j,1, Ri,j,2] ∗ V ar(βi)
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• As a field, genetics needs to make greater 
strides towards inclusivity and increasing 
diversity!
• Pruning and thresholding approach is biased 
across populations. Reduced accuracy with 
increasing divergence and unpredictable mean 
shifts raise interpretability issues.
• Extend simulation framework to model natural 
selection, test liability threshold and heritability 
differences across populations, and assess 
prediction accuracy with different causal allele 
frequency distributions.
• Create a new risk 
prediction method that 
models local ancestry in 
recently admixed 
populations.

Conclusions and Future Directions
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