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SCIENGE

An Enormous Study of the Genes Related to Staying in
School

Researchers have found 1,271 gene variants associated with years of formal
education. That’s important, but not for the obvious reasons.

ED YONG JUL 23, 2018

€he New Jork Times

Why Progressives Should
Embrace the Genetics of Education

By Kathryn Paige Harden
Dr. Harden is a psychologist who studies how genetic factors shape adolescent development.
July 24, 2018 f v A [f,s_,‘

Why We Shouldn't Embrace the Genetics of Education

| It's a trap!

By John Wamer  // July 26,2018 43 COMMENTS ~NI 1 ERE DAL



MIT Forecasts of genetic

Technology fate justgotalot more
ReVIeW accurate by Antonio Regalado February 21,2018

€he New Jork Cimes

Clues to Your Health Are Hidden @ By Gina Kolata
at 6.6 Million Spots in Your DNA 1 5,206

With a sophisticated new algorithm, scientists have found a way to
forecast an individual’s risks for five deadly diseases.



How scientists are learning
to predict your future with
your genes

But what are the limits?
By Brian Resnick | @B_resnick | brian@vox.com | Updated Aug 25, 2018, 9:35am EDT

Insight & Intelligence

August 22, 2018

Why Do Polygenic Risk Scores Get So Much
Hype?

GWAS for Common Disease Variants Gains Prominence

Julianna LeMieux, Ph.D.




The rise of the
polygenic risk score

\ All-'Us
RESEARCH PROGRAM

“We propose the time has come

to incorporate genetic risk scores

iInto clinical practice”

* Previous criticisms: limited sample size

e (Cheap test for insights into many diseases

e |Integrate with other clinical factors for
therapeutic decision-making

Knowles JW, Ashley EA (2018) Cardiovascular disease: The rise of the genetic risk score.
PLoS Med 15(3): e1002546.
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A long shared history between
PRS and breeding values

Animals Plants

Domestication ~12,000 years ago Domestication ~12,000 years ago

1860 1

1860s Discovery of the rules of inheritance (Mendel)

1886 Concept of regression to describe
relationship between offspring and

parents (Galton) 1903 Pure-line breeding theory (Johannsen)

1908 Hardy-Weinberg law
1908 Exploftation of heterosis (Shull)

1908 Law of population genetics 1 91 O o 1910 Modem pedigree selection (Nilsson-Ehle)
(Hardy & Weinberg)

1918 Population genetics introduced as 1920 Mutation breeding (Stadler)
an extension of the laws of inheritance '
(Fisher, Wright & Haldane) 1939 Concept of single-seed-descant breeding

method (Goulden)

1935 Improved DN}{:(]IHQ methods (Lush) 1945 Recurrent selection method of C"‘_‘A’_Ydln:’] (Hull)
1950 Estimation of breeding values as

random effects (Henderson) 1952 Methods for double-haploid lines (Chase)
1953 Model for DNA structure 1953 Model for DNA structure (Watson & Crick)

(Watson & Crick)
Kt
1960 Quantitative genetics (Falconer) 1 960
1972 Genetic engingeering, first 1970 Nobel Prize for the Green Revolution (Bordaug)
recombinant DNA molecules (Berg) 1980s Biotechnology, from the early 1980s
1975 Best linear unbiased prediction 1983 Nobe Pr‘.'uh.- C discovery of mobile genetic
(BLUP) (Henderson) elements (McClintock)
1980s Biotechnology, from the early 1980s 1990 Molecular markers used for improved selection
(Lande &Thompson)

1990 Molecular markers used for improved
salection (Lande & Thompson) 1994 First approval of commercial GM variety

1998 Best inear unbiased prediction based on trait
and marker data (TM-BLUP), a form of genomic

2001 Introduction and application of selection, introduced (Bernardo)

genomic selection (Meuwissen 201 0 o 2001 Introduction of theoretical approaches o genomic
et al.) selection (Meuwissen et al.)
2013 CRISPR-Casd-based genome editing 2010s Application of genomic prediction in plant breeding
2013 CRISPR-Cas9-based genome editing

Hickey, J.M., et al. (2017). Nat. Genet. 49, 1297-1303.
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Common polygenic variation contributes to risk of
schizophrenia and bipolar disorder

The International Schizophrenia Consortium*

P=2x10"28
oo
oo
» The dark days of low-powered & <o
GWAS a Tty
£ oo

e PRS show value of GWAS
even Iin the absence of

0.71,0.05

0.23 0.06
: PR : i 030000 oy
genome-wide significant loci "SSP oo momTo T
K O.<>°° %43 0
Schizophrenia  Bipolar disorder Non-psychiatric (WTCCC)

Figure 2 | Replication of the ISC-derived polygenic component in
independent schizophrenia and bipolar disorder samples. Variance



What is a polygenic risk
score?

Genetic prediction of an
individual’s phenotype

5 S - . Y = 9jP;

Sum the products of genotypes x

effect size estimates from a

T | — T T T T T T T T T T TTTTTT GWASacrossthegenome
1 2 3 4 5 8 7 8 9 1011121314 16 18 2022

Chromosome
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What is a polygenic risk
score?

Genetic prediction of an
individual’s phenotype

Y =) g;8
j=1

Sum the products of genotypes x

effect size estimates from a

T 1 T T T T T T T T T T TTTTT GWASacrossthegenome
1 2 3 4 5 8 7 8 9 1011121314 16 18 2022

Chromosome

Fundamental choices: Considerations:
e \Which SNPs to include e |D
 What weights to apply  P-value thresholds
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Most common steps to
calculate PRS

. Obtain GWAS summary statistics from the largest

possible discovery samples

. Obtain independent target samples with genome-wide

data

ldentify SNPs in common between both datasets

Deal with association redundancy due to LD

Restrict to SNPs with p < various thresholds (e.g., 5e-8,
1e-6, 1e-4, 0.05, 1)

Calculate PRS as sum of risk alleles weighted by 3 from
GWAS

Evaluate PRS accuracy by regressing trait in target
sample onto PRS (e.g. R?)

Content shamelessly borrowed and modified from Matthew Keller



Most common steps to
calculate PRS

1. Obtain GWAS summary statistics from the largest
possible discovery samples

Content shamelessly borrowed and modified from Matthew Keller



1. Obtain large GWAS

Miserableness
N. cases=151752; N. controls=203430

GWASDot

@SbotGwa

I'm a bot that loves Manhattan plots

Trait info: http://www.ukbiobank.ac.uk/data-showcase/
All things UK Biobank GWAS: http://www.nealelab.is/uk-biobank/



http://www.ukbiobank.ac.uk/data-showcase/
http://www.nealelab.is/uk-biobank/

More powerful GWAS =
more accurate predictor

0.8

0.6

0.4

R? from prediction

0.2 —

/

100 1,000 10,000 100,000

Discovery sample size (N,)

Wray, N.R., et al. (2013). Nat. Rev. Genet. 14, 507-515.



What do GWAS summary
statistics contain?

Minimal useful info: variant ID, chromosome, position, risk

and protective allele, sample size, p-value, effect size,

standard error

Example: standing height

variant

1:15791:C:T
1:69487:G:A
1:69569:T:C
1:139853:C:T
1:692794:CA:C
1:693731:A:G
1:707522:G:C
1:717587:G:A
1:723329:A:T

minor_al
lele

006040 >»H

5.44E-09
5.76E-06
1.88E-04
5.67E-06
1.11E-01
1.16E-01
9.73E-02
1.57E-02
1.73E-03

low confid
minor_ AF ence varia

TRUE
TRUE
TRUE
TRUE
FALSE
FALSE
FALSE
FALSE
FALSE

n_complete_s
amples

360388
360388
360388
360388
360388
360388
360388
360388
360388

133

AC

3.92E-03
4.15E+00
1.36E+02
4.09E+00
7.97E+04
8.35E+04
7.01E+04
1.13E+04
1.25E+03

ytx

3.47E-03
-8.75E-02
-2.08E+00
-1.06E-01
1.02E+02
-6.93E+01
-7.86E+00
5.47E+00
3.87E+01

beta

1.80E+01
-4.13E-02
-4.70E-02
-4.21E-02
7.97E-04
-1.44E-03
2.47E-04
1.13E-03
2.22E-02

Se

1.78E+02

3.5E-01
6.27E-02

3.5E-01
2.90E-03
2.74E-03
3.08E-03
7.35E-03
2.17E-02

205

tstat

1.01E-01
-1.18E-01
-7.5E-01
-1.2E-01
2.75E-01
-5.24E-01
8.02E-02
1.54E-01
1.02E+00

pval

9.19E-01
9.06E-01
4.54E-01
9.04E-01
/.83E-01
6.00E-01
9.36E-01
8.77E-01
3.06E-01



Most common steps to
calculate PRS

. Obtain GWAS summary statistics from the largest

possible discovery samples

. Obtain independent target samples with genome-wide

data

Content shamelessly borrowed and modified from Matthew Keller



2. Independent target
cohort must be independent

Prediction “accuracy” measures will be overestimated if
discovery and target are not independent. This can arise If:

e The same people are in both cohorts
e There are close relatives between the two

e SNPs are selected from meta-analysis of discovery +

target



Choose your favorite
dataset

Most people like phenotypes, but...

The 1000 Genomes Project Consortium. (2015). Nature 526, 68-74.



Most common steps to
calculate PRS

. Obtain GWAS summary statistics from the largest

possible discovery samples

. Obtain independent target samples with genome-wide

data

. ldentify SNPs in common between both datasets

Content shamelessly borrowed and modified from Matthew Keller



3. Use SNPs in common

X v

Array data Imputed data

Phase and impute data to help maximize overlap

Content shamelessly borrowed and modified from Matthew Keller
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Most common steps to
calculate PRS

. Obtain GWAS summary statistics from the largest

possible discovery samples

. Obtain independent target samples with genome-wide

data
ldentify SNPs in common between both datasets
Deal with association redundancy due to LD

Content shamelessly borrowed and modified from Matthew Keller



4. Account for LD

Two primary approaches:

300 —
g :
250 - | .« LD clumping
200 - | LD clump | (heuristic, less good)

—logio(p)

e |n PLINK, --clump

~* Model LD! LDPred
| 1 | | | | | | | | | 1T (better, bUt harder to

1 2 3 4 5 6 7 8 91011121314 16 18 2022

Chromosome ru n)




Clumping with PLINK

Example:

plink --bfile [reference LD panel] \

--clump [summary statistics] \

--clump-field [summary statistics p-value column name] \
-—-clump-snp-field [summary statistics snp column name] \
-—clump-pl 1 \

-—clump-p2 1 \

-—clump-r2 0.5 \

--clump-kb 250 \

--out [output filename]
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Most common steps to
calculate PRS

. Obtain GWAS summary statistics from the largest

possible discovery samples

. Obtain independent target samples with genome-wide

data
ldentify SNPs in common between both datasets
Deal with association redundancy due to LD

Restrict to SNPs with p < various thresholds (e.g., 5e-8,
1e-6, 1e-4, 0.05, 1)

Content shamelessly borrowed and modified from Matthew Keller



5. Use various p thresholds

300 -
250
oo LD clump
& 150 : 1 - -
' ' .. 1 M
" ,
100 Z gl |
' .e i
i | TR o
50 i} : !
ﬁ Y B e T et wdw = gy 199 Ve e i =

T 1 — 1 1 1 T T T T T rrrrrrrm
1 2 3 4 5 8 7 8 91011121314 186 18 2022
Chromosome

Use p-thresholds from 5e-8, 1-e7,...0.05...1
Report results from all thresholds




For PLINK

Create a file with multiple thresholds, for example:
[Threshold name] [lower bound] [upper bound]

sl 0 0.00000005
s2 0 0.000001
s3 0 0.0001

s4 0 0.001

s5 0 0.01

S6 0 0.05

s/ 0 0.1

s8 0 0.2

s9 0 0.5

sl0 0 1
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Most common steps to
calculate PRS

. Obtain GWAS summary statistics from the largest

possible discovery samples

. Obtain independent target samples with genome-wide

data

ldentify SNPs in common between both datasets

Deal with association redundancy due to LD

Restrict to SNPs with p < various thresholds (e.g., 5e-8,
1e-6, 1e-4, 0.05, 1)

Calculate PRS as sum of risk alleles weighted by 3 from
GWAS

Content shamelessly borrowed and modified from Matthew Keller



6. Calculate PRS

PRS; = 2 [Bi,discovery © SNPjj

e idiscovery = effect size in discovery sample from
e linear regression (continuous trait)
e |ogistic regression (binary trait; 3 = log(OR))

SNP; = # alleles (0,1,2) for SNP i of person j in target
sample

In PLINK, --score.



In PLINK

Example:

plink --bfile [best guess genotypes] \

--extract [clumped snps] \

-—-g-score-range [range file] [summary stats] [wvariant ID
column #] [p-value column #] [header] \

--score [summary stats] [variant ID column #] [allele column
#]1] [effect size column #] \

--out [output file]
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Most common steps to
calculate PRS

. Obtain GWAS summary statistics from the largest

possible discovery samples

. Obtain independent target samples with genome-wide

data

ldentify SNPs in common between both datasets

Deal with association redundancy due to LD

Restrict to SNPs with p < various thresholds (e.g., 5e-8,
1e-6, 1e-4, 0.05, 1)

Calculate PRS as sum of risk alleles weighted by 3 from
GWAS

Evaluate PRS accuracy by regressing trait in target
sample onto PRS (e.g. R?)

Content shamelessly borrowed and modified from Matthew Keller



/. Evaluate PRS accuracy

e For continuous traits, this is simply the R? from regressing
trait ~ PRS in target + covariates

e Trickier for binary (e.g., case-control) data due to
ascertainment

o Often Nagelkerke’s R2is reported. Unfortunate,

because this depends on prevalence and case:control
ratio. B om ke

K = disease prevalence

Predictor explains 7% of
variance in liability

N

©
-

Nagelkerke's R2

0 0.2 0.4 0.6 0.8 1

Proportion of cases in the target sample (P)

Content shamelessly borrowed and modified from Matthew Keller



/. Evaluate PRS accuracy

e For continuous traits, this is simply the R? from regressing
trait ~ PRS in target + covariates

e Trickier for binary (e.g., case-control) data due to
ascertainment

o Often Nagelkerke’s R2is reported. Unfortunate,

because this depends on prevalence + case:control
ratio.

e Better: liability-scale R?

Content shamelessly borrowed and modified from Matthew Keller



/. Please report comparable R2!

(thrilling stuff, | know)

TABLE I. Brief description of R*> measures used in this study and their theoretical expectation

Brief description Notation and formula Expectation

N

. . 2
Y (1 — 102
2 \%=Y)

, _.} - h 2
R? on the observed scale RE=1- % h i
i -2 ) '
Cox and Snell’s R* on the observed scale R2. . = ] — ] keinoocs,, o h2__ 2
xand & ‘ s Likelhood, ey
2 2
’ . Ve P2 e - ( ) 2 _ R('-::ﬁ & &N
Nagelkerke’s R? on the observed scale (hard to compare R} = MO e e (e
. . - - . ". / ~ o .
R? on the liability scale Rif = R3 ‘]_ 2) h{
R? on the probit liability scal t I R rertpins:) 2
X" on the probit hability scale (easy @) Compare_) “probit S I
- [‘ . 1
? ' . 10 2 ‘\'&r‘....‘[nil:l'g, ! 2
2 S R 2 _ 1M o0g 2
R= on the logit liability scale Cogit = Taribpuge) 1329 hj
R? on the liability scale using AUC Renie = - if
) Y scalc us . AUC (n_v:,—-m]-‘-—-(.:!2mlfm—f)-—-.'n;>(U.‘;-—.’.:I !
2 ' iy . . . % R?.,... C 2
R* on the liability scale when using ascertained case-control studies Ry = Hé—u_ hir
s J\ TL-‘: : ]

i, observations that are 0 or 1 for unaffected and affected individuals; h."-“, heritability on the liability scale, in this context the proportion
of variance on the liability scale explained by the genetic profile; K, population prevalence; z, the height of a normal density curve at the
point according to K; g, the sum of all additive genetic factors in the estimated genetic predictor; B, regression coefficient from generalized
linear model; m, the mean liability for cases; n, the mean liability for controls; {, the threshold on the normal distribution that truncates the
proportion of disease prevalence K: (0, the inverse of the cumulative density [unction of the normal distribution up to values of AUC; C and
#, correcting factors for ascertainment.

Lee, S.H., et al. (2012). Genet. Epidemiol. 36, 214-224.



So now you have a PRS...

e \What are polygenic risk scores?
e How to compute them
e Methods, interpretations, and uses

e Ancestry, health disparities, and ongoing/future directions



The rise of the
polygenic risk score

6

No discussion of ancestry!

“We propose the time has come
to incorporate genetic risk scores
iInto clinical practice”

* Previous criticisms: limited sample size

e (Cheap test for insights into many diseases

e |Integrate with other clinical factors for
therapeutic decision-making

Knowles JW, Ashley EA (2018) Cardiovascular disease: The rise of the genetic risk score.
PLoS Med 15(3): e1002546.



Genomics has a diversity
problem

- Population
= B European ®
= I East Asian 69
£ 1001 [ South Asian/Other Asian ]
N W African 3
<§E | Hispanic/Latino e
S Greater Middle Eastern vy
- B Oceanic o
7)) 501 Other i
(2 : LT
S Multiple 2 =
S o
= =
O L
k=
0- -0

O (0 0] o QV < (o 00

o o — — — — —

o o o o o o o

(QV [QV Al Al (QV Al (QV
c 1.00- : : :
2 0.751
O 0.50+
© 0.251
L. 0.00-

Martin, Kanai, Daly. Clinical use of genetic risk scores will exacerbate existing health disparities (in prep)



Causal effects are mostly
shared across populations

Crohn’s disease

Ulcerative colitis

22
21 ETS2, PSMG1 i’gg;ﬁﬁgﬁ;
20|
19
o M hic i E
7 onomaorpnic In noN—europeans
GPR12, USP12
NOD2 qg|
NOD2 STAT3 13.
NOD2 i I GOT1, NKX2-3
11
GOT1, NKX2-3
ZNF365, ADO 10 RCLT, JAK2 - -
; Similar MAF and OR
8 GNA12
TNFSF15, TNFSF8 , LOC285740, PHACTR2
[0}
£
2
2 S8 HLA-DQAT, HLA-DQB1
TNFSF15 $ HLA-DQAT1, HLA-DQBT
O -
; Different MAF
HLA-DQA1, HLA-DQB1 4]
IL 12B, LOC285627
DAB2, PTGER4
2
PPBP, CXCL5
ATG16L1 TBC1D1, FLJ13197 -
Different OR
— FCGR2A
FCGR2A
1 IL23R
CTH, PTGER3
IL23R
RNF186, OTUD3 RNF186, OTUD3
IL23R ’

Different MAF and different OR

European East Asian European East Asian
Liu et al (2015) Nat Gen

...but what about other effects?




Predictable basis of PRS

disparities
Prediction accuracy decays with Fst

Why?

e GWAS best-powered to discover common variants

e | D differe across populati——- GWA

5

canninEhRn

TN
=

0.0 Mir...

25+

1.5

weigh;




Please cite this article in press as; Martin et al., ITuman Demographic Iistory Impacts Genetic Risk Prediction across Diverse Populations,
The American Journal of Human Genetics (2017), http://dx.doi.org/10.1016/j.ajhg.2017.03.004

ARTICLE

Human Demographic History Impacts
Genetic Risk Prediction across Diverse Populations
Alicia R. Martin,’->%4 Christopher R. Gignoux,* Raymond K. Walters,'-”* Genevieve L. Wojcik,*

Benjamin M. Neale,»?* Simon Gravel,>® Mark J. Daly,"#* Carlos D. Bustamante,*
and Eimear E. Kenny/ 82 10.*

. . East Asians He'g ht
* Polygenic height scoresare . Africans

substantially different
across populations

South Asians

Americans
Europeans

e These differences are not

meaningful S . : 5 ;
Polygenic Score




Coalescent model for
simulation framework

Africans

Model parameters

Europeans ° Ne: population size
FuAs * m: migration rates

Naso-—""" T: ti
] ° |:time
550 East Asians . . owth
Tar Ty
148kya Slkya 23kya

—————————————————
Demographic model: Gravel, S., et al. (2011). Proc. Natl. Acad. Sci. U. S. A. 708, 11983-11988.
msprime: Kelleher, J., Etheridge, A.M., and Mcvean, G. (2016). PLoS Comput Biol 1-22.



Simulation overview

1. Simulate genotypes| |2. Assign evenly spaced
(AFR, EUR, EAS) causal variants

000000000000
AAAAAAAAAAAA | | D

3. Compute PRSTRUE 4. Define EUR cases,
m Controls (10k each)

XZZ;%@; Laé

5. Run a EUR GWAS O. Compute PRSINFER
. across populations

s
" 1300
13 s *
12 .
EL] 1511086280 -
' i 5
! 52074366
. ;
&5 : 2 - 2274223 _
5 v .
7 = = q
. bt _— . .
g ) b | ; ’I/ ?/
P e R e el e S D
e AR T o o o pi i 3 3
ot 3 St S R I TR PR P A LR ot
s dideradle o Sl e dena DL gl
i AR BE AT ids s L L
iR G R G
il i 1 .
2 Z
O 1 MGz BoS GGha BWS M6 MCh7 BCHs BChS MG 10 HCN 11 MG T2 ONTS Mohid —
Chvis BChv1G MGH17 MG 15 MGH19 MON20 MC21 Moh22

555555555
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PRStruUE Is not significantly
different across populations

True causal variants

EEE 3

-0.01
IDF{STrue



PRSinrer is highly stratified
across populations

True causal variants GWAS inferred variants
80-
0.03-
60-
> Population  >.0.02 Population
‘B BIAFR ‘B BIAFR
S 40- [ lEAs S [ lEAS
O LIEUR - LIEUR
0.01-
20-
0- 0.00-
~0.02 ~0.01 0.00 0.01 0.02 ~500 ~250 0 250

PRSTrue I:>F{Slnfer



Unpredictable PRS biases
across populations

B 0- Population
£ » AFR
k= EAS
N EUR
_1 -
-2 -
4 2 0 2 4



Unpredictable PRS biases
across populations

Analogous to different traits:
Schizophrenia 12D

2

Height

Population
AFR

For a given trait, impossible to predict a priori which
population will have highest inferred risk!




Staggering PRS disparities
across populations

>

0.100

0.075+

0.050

Variance explained

0.025 1

0.000 ll— I

- __
>‘ —~ —_~ _,— A~ —_
- =0 o — o co Q N 9 N €
=¢ 2z 5: 58 55 98 82 8%  8f
©
= >
Trait/study

Target [ African American [JJJ] East Asian [JJJ] European
population

Martin, Kanai, Daly. Clinical use of genetic risk scores will exacerbate existing health disparities (in prep)



Staggering PRS disparities
across populations

>
w

SCZ (Ripke) 1 ) |
0.100 |
SCZ (Vilhjalmsson) - o |
§ SCZ (Vilhjalmsson) ° |
'S 0.0751 SCZ (Ripke) - ° :
% SCZ (Vilhjalmsson)- ° |
8 0.050 - - SCZ (Ripke) - ) :
_E % Mean (East Asian) ‘ :
B 0.025 S BMI (Belsky) o |
3 EA (Lee)- ® I
=) |
I I . I [] I = EA (Ware)- o |
0.000 " — n |
SCZ (Vilhjalmsson) - ) I
— © — & Height (Ware) - ® |
_$ -0 2 _5 _O EQD 0 2 2 |
S% S5 <£ <% <5 95 O&F O3 NE BMI (Ware)- o |
ne mz WE Wa Wz 22 ofF o0 s |
o = g = T2 = > c SCZ (Vassos) ® |
— = EA (Domingue) - ) :
Trait/study Mean (African American)- < |
0.00 0.25 0.50 0.75 1.00
Target [ African American [JJJ] East Asian [JJJ] European Proportion variance explained
population relative to Europeans

Martin, Kanai, Daly. Clinical use of genetic risk scores will exacerbate existing health disparities (in prep)



Consistent promise from
diversifying efforts

:Cases  Controls

...........................................................

e LA S Despite 3X larger

0.03{ EUR} 37k | 113k sample sizes in
+ Europeans,
= prediction in East
] 3 ﬁ + Asians performs
Hailiang Huang NCE: 0.02- + best with matched
- + training data
IS +
7
| ?_:, 0.0 + + Other examples:
»n 0.011 .
) . . BMI (Akiyama et al,
e N y ! Training data = 5015 Nat Gen)
e ' - East Asian 5oz (Liet al, 2017
o -~ European
Chia-Yen Chen . Nat Gen)

Q) b‘ ’\ \
Psychiatric Q(b PPN QQ QQ QSOQ QQ’Q(O
Genomics
Consortium P-value threshold



Consistent promise from
diversifying efforts

Masahiro Kanai

Goal: Compare PRS accuracy for 17 traits in UKBB and BBJ
e Randomly set aside 5,000 individuals from each biobank

e Match BBJ proportion with disease ascertainment

e Run GWAS on all other BBJ individuals. Match numbers in
UKBB.

Do we see symmetric, comparable PRS accuracy?

Martin, Kanai, Daly. Clinical use of genetic risk scores will exacerbate existing health disparities (in prep)



Consistent promise from
diversifying efforts

Masahiro Kanai

GWAS
0.154 cohort
(sumstats)

+
A5

¢
0.004 ¢ t
FEY P PPRS PN PR ERE
SORDTOTED N R LSS 20
Q)@chQ 3 ch‘% i‘\oo* QRS R Qg’&z\@"-’% 59

Phenotype

Martin, Kanai, Daly. Clinical use of genetic risk scores will exacerbate existing health disparities (in prep)



Consistent promise from
diversifying efforts

Masahiro Kanai

GWAS 0.08 1 GWAS
0.15- cohort cohort
(sumstats) (sumstats)
- BBJ - BBJ ¢
- UKBB * \ 0.06 < UKBB
) ~ !
o 010 \ 2
N
m l
) * — 0.04 ‘ !
c =
(\lv \ \ ND: *
0C 0.05
gttt e | W |
thh, Lttty L*k*+h i t
0oodd t 1t "¢ 0.00 - o
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Consistent promise from

diversifying efforts
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Trans-ethnic genetic
correlation is quite high
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Cohort definition matters!ﬁ

e UKBB has a “healthy volunteer” bias
(healthier than average population)

e BBJ cohort is ascertained for 47 diseases
(sicker than average population)

e Manually transcribe patients’ data from
medical records in each hospital, read
through and re-enter into BBJ’s electronic

database




Cohort definition matters!

Observed h2 Observed h2

Trait (BBJ) (UKBB) SE (BBJ) SE (UKBB)
Basophil 0.0441 0.0213  0.0121 0.0050
BMI 0.1361 0.1955 0.0087 0.0090
DBP 0.0430 0.0984  0.0051 0.0068
Eosinophil 0.0586 0.1354  0.0093 0.0167
Hb 0.0452 0.1054  0.0053 0.0107
Height 0.3059 0.3675 0.0187 0.0208
Ht 0.0457 0.0942  0.0056 0.0093
Lymphocyte 0.0516 0.1318  0.0073 0.0118
MCH 0.1309 0.1942 0.0184 0.0210
MCHC 0.0481 0.0402  0.0080 0.0052
MCV 0.1447 0.1994 0.0178 0.0201
Monocyte 0.0448 0.1331  0.0090 0.0177
Neutrophil 0.0758 0.1153  0.0097 0.0131
Platelet 0.1260 0.2012 0.0148 0.0179
RBC 0.0818 0.1586  0.0093 0.0141
SBP 0.0574 0.1041  0.0063 0.0070
WBC 0.0778 0.1286  0.0074 0.0114



...but a lot of room for
growth
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New statistical approaches
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Genetic prediction with GWAS
from multiple populations
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GWAS stats differ across
populations due to LD
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Key elements of MAMA

£, 2;

e \/ariance-covariance of e \/ariance-covariance of
genetic component error and biases

e More information shared e Less information shared
when LD patterns and when estimates are noisy
conditional effects are or biased

similar



Applications In real data

e Psychiatric disorders

Phenotype Population/ N Cases |N Controls
Location

Schizophrenia Europe 34,989 113,075 PGC
Schizophrenia East Asia 13,305 16,244 PGC
Schizophrenia African Americans 6,981 2,564 PGC
Bipolar/Schizophrenia Hispanic/Latinos 3,982 4,553 PGC
Schizophrenia Africa ~18,000 ~18,000 NeuroGAP
PTSD U.S. minorities 21,845 58,769 PGC/CVB

 Anthropometric traits (height, BMI, blood panels, etc)

UK Biobank UKBB ~500k
Finnish biobank Finrisk ~50k

BioBank Japan Project BBJ ~162k
China Kadoorie Biobank CKB  ~100k
PAGE (US minorities) PAGE ~50k



L ots of nice resources!

Some nice reviews:

* Pasaniuc, B., and Price, A.L. (2017). Dissecting the genetics of complex traits
using summary association statistics. Nat. Rev. Genet. 718, 117-127.

e Chatterjee, N., Shi, J., and Garcia-Closas, M. (2016). Developing and evaluating
polygenic risk prediction models for stratified disease prevention. Nat. Rev. Genet.

* Wray, N.R., Yang, J., Hayes, B.J., Price, A.L., Goddard, M.E., and Visscher, P.M.
(2013). Pitfalls of predicting complex traits from SNPs. Nat. Rev. Genet. 14, 507-
515.

Coming soon:

* Martin, Kanai, Daly. Clinical use of genetic risk scores will exacerbate existing
health disparities (in prep)

* Martin, Daly, Robinson, Hyman, & Neale. Predicting polygenic risk of psychiatric
disorders (in revision)



Conclusions

e Polygenic risk scores have the potential to improve
clinical models, but are currently likely to increase health
disparities due to Eurocentric GWAS biases

e We need more diverse GWAS studies and new methods
to address these major issues

e We are developing new methods that can use biobank-
scale data from diverse populations to improve the
generalizability of genetic prediction across populations



Future directions

e How will we use PRS in the future?

e Biomarker for: behavioral interventions? differential
diagnosis? personalized drug therapies? reducing cost
of clinical trials?

e Tricky issues to resolve:
e Pleiotropy

e Healthcare economics: $ and life disparities by
ethnicity?
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