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Outline

• What are polygenic risk scores?


• How to compute them


• Methods, interpretations, and uses


• Ancestry, health disparities, and ongoing/future directions











The rise of the 
polygenic risk score

• Previous criticisms: limited sample size

• Cheap test for insights into many diseases

• Integrate with other clinical factors for 

therapeutic decision-making 

“We propose the time has come 
to incorporate genetic risk scores 

into clinical practice”

Knowles JW, Ashley EA (2018) Cardiovascular disease: The rise of the genetic risk score. 
PLoS Med 15(3): e1002546.



A long shared history between 
PRS and breeding values

Hickey, J.M., et al. (2017). Nat. Genet. 49, 1297–1303.



• The dark days of low-powered 
GWAS


• PRS show value of GWAS 
even in the absence of 
genome-wide significant loci



What is a polygenic risk 
score?

Y =
mX

j=1

gj�j
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Genetic prediction of an 
individual’s phenotype

Sum the products of genotypes ⨉ 
effect size estimates from a 
GWAS across the genome



What is a polygenic risk 
score?

Fundamental choices: 
• Which SNPs to include

• What weights to apply


Considerations: 
• LD

• P-value thresholds

Y =
mX

j=1

gj�j
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LD clump

Genetic prediction of an 
individual’s phenotype

Sum the products of genotypes ⨉ 
effect size estimates from a 
GWAS across the genome



Most common steps to 
calculate PRS

1. Obtain GWAS summary statistics from the largest 
possible discovery samples


2. Obtain independent target samples with genome-wide 
data


3. Identify SNPs in common between both datasets

4. Deal with association redundancy due to LD

5. Restrict to SNPs with p < various thresholds (e.g., 5e-8, 

1e-6, 1e-4, 0.05, 1)

6. Calculate PRS as sum of risk alleles weighted by β from 

GWAS

7. Evaluate PRS accuracy by regressing trait in target 

sample onto PRS (e.g. R2)

Content shamelessly borrowed and modified from Matthew Keller
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1. Obtain large GWAS

Trait info: http://www.ukbiobank.ac.uk/data-showcase/ 

All things UK Biobank GWAS: http://www.nealelab.is/uk-biobank/

http://www.ukbiobank.ac.uk/data-showcase/
http://www.nealelab.is/uk-biobank/


More powerful GWAS = 
more accurate predictor

Wray, N.R., et al. (2013). Nat. Rev. Genet. 14, 507–515.



What do GWAS summary 
statistics contain?

Minimal useful info: variant ID, chromosome, position, risk 
and protective allele, sample size, p-value, effect size, 
standard error


Example: standing height

variant minor_al
lele minor_AF

low_confid
ence_varia
nt

n_complete_s
amples AC ytx beta se tstat pval

1:15791:C:T T 5.44E-09 TRUE 360388 3.92E-03 3.47E-03 1.80E+01 1.78E+02 1.01E-01 9.19E-01
1:69487:G:A A 5.76E-06 TRUE 360388 4.15E+00 -8.75E-02 -4.13E-02 3.5E-01 -1.18E-01 9.06E-01
1:69569:T:C C 1.88E-04 TRUE 360388 1.36E+02 -2.08E+00 -4.70E-02 6.27E-02 -7.5E-01 4.54E-01
1:139853:C:T T 5.67E-06 TRUE 360388 4.09E+00 -1.06E-01 -4.21E-02 3.5E-01 -1.2E-01 9.04E-01
1:692794:CA:C C 1.11E-01 FALSE 360388 7.97E+04 1.02E+02 7.97E-04 2.90E-03 2.75E-01 7.83E-01
1:693731:A:G G 1.16E-01 FALSE 360388 8.35E+04 -6.93E+01 -1.44E-03 2.74E-03 -5.24E-01 6.00E-01
1:707522:G:C C 9.73E-02 FALSE 360388 7.01E+04 -7.86E+00 2.47E-04 3.08E-03 8.02E-02 9.36E-01
1:717587:G:A A 1.57E-02 FALSE 360388 1.13E+04 5.47E+00 1.13E-03 7.35E-03 1.54E-01 8.77E-01
1:723329:A:T T 1.73E-03 FALSE 360388 1.25E+03 3.87E+01 2.22E-02 2.17E-02 1.02E+00 3.06E-01



Most common steps to 
calculate PRS

1. Obtain GWAS summary statistics from the largest 
possible discovery samples


2. Obtain independent target samples with genome-wide 
data


3. Identify SNPs in common between both datasets

4. Deal with association redundancy due to LD

5. Restrict to SNPs with p < various thresholds (e.g., 5e-8, 

1e-6, 1e-4, 0.05, 1)

6. Calculate PRS as sum of risk alleles weighted by β from 

GWAS

7. Evaluate PRS accuracy by regressing trait in target 

sample onto PRS (e.g. R2)

Content shamelessly borrowed and modified from Matthew Keller



2. Independent target 
cohort must be independent
Prediction “accuracy” measures will be overestimated if 
discovery and target are not independent. This can arise if:


• The same people are in both cohorts


• There are close relatives between the two


• SNPs are selected from meta-analysis of discovery + 
target



Choose your favorite 
dataset

Most people like phenotypes, but...

The 1000 Genomes Project Consortium. (2015). Nature 526, 68–74.
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sample onto PRS (e.g. R2)

Content shamelessly borrowed and modified from Matthew Keller



3. Use SNPs in common

Phase and impute data to help maximize overlap

Array data Imputed data

Illumina 
array

Axiom 
array

Content shamelessly borrowed and modified from Matthew Keller



Most common steps to 
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Content shamelessly borrowed and modified from Matthew Keller



4. Account for LD

LD clump

Two primary approaches:


• LD clumping 
(heuristic, less good)


• In PLINK, --clump


• Model LD! LDPred 
(better, but harder to 
run)



Clumping with PLINK

Example:


plink --bfile [reference LD panel] \  
--clump [summary statistics] \  
--clump-field [summary statistics p-value column name] \  
--clump-snp-field [summary statistics snp column name] \  
--clump-p1 1 \ 
--clump-p2 1 \ 
--clump-r2 0.5 \ 
--clump-kb 250 \  
--out [output filename]



Most common steps to 
calculate PRS

1. Obtain GWAS summary statistics from the largest 
possible discovery samples


2. Obtain independent target samples with genome-wide 
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5. Restrict to SNPs with p < various thresholds (e.g., 5e-8, 

1e-6, 1e-4, 0.05, 1)

6. Calculate PRS as sum of risk alleles weighted by β from 

GWAS
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sample onto PRS (e.g. R2)

Content shamelessly borrowed and modified from Matthew Keller



5. Use various p thresholds

LD clump

Use p-thresholds from 5e-8, 1-e7,...0.05...1

Report results from all thresholds



For PLINK
Create a file with multiple thresholds, for example:

[Threshold name]     [lower bound]     [upper bound]

s1      0       0.00000005 
s2      0       0.000001 
s3      0       0.0001 
s4      0       0.001 
s5      0       0.01 
s6      0       0.05 
s7      0       0.1 
s8      0       0.2 
s9      0       0.5 
s10     0       1



Most common steps to 
calculate PRS

1. Obtain GWAS summary statistics from the largest 
possible discovery samples


2. Obtain independent target samples with genome-wide 
data


3. Identify SNPs in common between both datasets

4. Deal with association redundancy due to LD

5. Restrict to SNPs with p < various thresholds (e.g., 5e-8, 

1e-6, 1e-4, 0.05, 1)

6. Calculate PRS as sum of risk alleles weighted by β from 

GWAS

7. Evaluate PRS accuracy by regressing trait in target 

sample onto PRS (e.g. R2)

Content shamelessly borrowed and modified from Matthew Keller



6. Calculate PRS

• PRSj = Σ [βi,discovery * SNPij]


• βi,discovery = effect size in discovery sample from


• linear regression (continuous trait)


• logistic regression (binary trait; β = log(OR))


• SNPij = # alleles (0,1,2) for SNP i of person j in target 
sample


• In PLINK, --score. 



In PLINK

Example:


plink --bfile [best guess genotypes] \ 
--extract [clumped snps] \ 
--q-score-range [range file] [summary stats] [variant ID 
column #] [p-value column #] [header] \ 
--score [summary stats] [variant ID column #] [allele column 
#] [effect size column #] \ 
--out [output file]



Most common steps to 
calculate PRS

1. Obtain GWAS summary statistics from the largest 
possible discovery samples


2. Obtain independent target samples with genome-wide 
data


3. Identify SNPs in common between both datasets

4. Deal with association redundancy due to LD

5. Restrict to SNPs with p < various thresholds (e.g., 5e-8, 

1e-6, 1e-4, 0.05, 1)

6. Calculate PRS as sum of risk alleles weighted by β from 

GWAS

7. Evaluate PRS accuracy by regressing trait in target 

sample onto PRS (e.g. R2)

Content shamelessly borrowed and modified from Matthew Keller



7. Evaluate PRS accuracy
• For continuous traits, this is simply the R2 from regressing 

trait ~ PRS in target + covariates


• Trickier for binary (e.g., case-control) data due to 
ascertainment


• Often Nagelkerke’s R2 is reported. Unfortunate, 
because this depends on prevalence and case:control 
ratio.

Content shamelessly borrowed and modified from Matthew Keller



7. Evaluate PRS accuracy
• For continuous traits, this is simply the R2 from regressing 

trait ~ PRS in target + covariates


• Trickier for binary (e.g., case-control) data due to 
ascertainment


• Often Nagelkerke’s R2 is reported. Unfortunate, 
because this depends on prevalence + case:control 
ratio.


• Better: liability-scale R2

Content shamelessly borrowed and modified from Matthew Keller



7. Please report comparable R2 ! 
(thrilling stuff, I know)

(hard to compare)

(easy to compare!)

Lee, S.H., et al. (2012). Genet. Epidemiol. 36, 214–224.



So now you have a PRS...

• What are polygenic risk scores?


• How to compute them


• Methods, interpretations, and uses


• Ancestry, health disparities, and ongoing/future directions



The rise of the 
polygenic risk score

• Previous criticisms: limited sample size

• Cheap test for insights into many diseases

• Integrate with other clinical factors for 

therapeutic decision-making 

“We propose the time has come 
to incorporate genetic risk scores 

into clinical practice”

No discussion of ancestry!

Knowles JW, Ashley EA (2018) Cardiovascular disease: The rise of the genetic risk score. 
PLoS Med 15(3): e1002546.



Genomics has a diversity 
problem

Martin, Kanai, Daly. Clinical use of genetic risk scores will exacerbate existing health disparities (in prep)
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Causal effects are mostly 
shared across populations

...but what about other effects?

Crohn’s disease Ulcerative colitis

European East Asian European East Asian
Liu et al (2015) Nat Gen



Predictable basis of PRS 
disparities

Prediction accuracy decays with FST


Why?

• GWAS best-powered to discover common variants


• LD differences across populations


• More LD, higher association stats


• Environmental, selection, and more complicated differences
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• Polygenic height scores are 
substantially different 
across populations


• These differences are not 
meaningful 0.0
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Coalescent model for 
simulation framework

Demographic model: Gravel, S., et al. (2011). Proc. Natl. Acad. Sci. U. S. A. 108, 11983–11988. 
msprime: Kelleher, J., Etheridge, A.M., and Mcvean, G. (2016). PLoS Comput Biol 1–22. 

Model parameters 
• Ne: population size

• m: migration rates

• T: time

• r: growth

Africans

Europeans

East Asians



Simulation overview
1. Simulate genotypes 

(AFR, EUR, EAS)
2. Assign evenly spaced 

causal variants
⚡ ⚡ ⚡ ⚡ ⚡ ⚡ ⚡ ⚡ ⚡ ⚡ ⚡

3. Compute PRSTRUE 4. Define EUR cases, 
controls (10k each)

5. Run a EUR GWAS 6. Compute PRSINFER 
across populations

X =
mX

i=1

gi�i

X =
mX

i=1

gi�i



PRSTRUE is not significantly 
different across populations
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PRSINFER is highly stratified 
across populations
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Unpredictable PRS biases 
across populations



Unpredictable PRS biases 
across populations

Analogous to different traits:
Height Schizophrenia T2D

For a given trait, impossible to predict a priori which 
population will have highest inferred risk!



Staggering PRS disparities 
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Cases Controls
EAS 13k 16k
EUR
	37k	

37k 113k
Despite 3X larger 
sample sizes in 

Europeans, 
prediction in East 
Asians performs 

best with matched 
training data

Hailiang Huang

Chia-Yen Chen
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Consistent promise from 
diversifying efforts

Other examples:

BMI (Akiyama et al, 

2018 Nat Gen)

SCZ (Li et al, 2017 

Nat Gen)



Consistent promise from 
diversifying efforts
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Masahiro Kanai

Goal: Compare PRS accuracy for 17 traits in UKBB and BBJ


• Randomly set aside 5,000 individuals from each biobank


• Match BBJ proportion with disease ascertainment


• Run GWAS on all other BBJ individuals. Match numbers in 
UKBB.


Do we see symmetric, comparable PRS accuracy?
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Trans-ethnic genetic 
correlation is quite high



Cohort definition matters!
• UKBB has a “healthy volunteer” bias 

(healthier than average population)


• BBJ cohort is ascertained for 47 diseases 
(sicker than average population)


• Manually transcribe patients’ data from 
medical records in each hospital, read 
through and re-enter into BBJ’s electronic 
database



Cohort definition matters!
Trait

Observed h2 
(BBJ)

Observed h2 
(UKBB) SE (BBJ) SE (UKBB)

Basophil 0.0441 0.0213 0.0121 0.0050
BMI 0.1361 0.1955 0.0087 0.0090
DBP 0.0430 0.0984 0.0051 0.0068
Eosinophil 0.0586 0.1354 0.0093 0.0167
Hb 0.0452 0.1054 0.0053 0.0107
Height 0.3059 0.3675 0.0187 0.0208
Ht 0.0457 0.0942 0.0056 0.0093
Lymphocyte 0.0516 0.1318 0.0073 0.0118
MCH 0.1309 0.1942 0.0184 0.0210
MCHC 0.0481 0.0402 0.0080 0.0052
MCV 0.1447 0.1994 0.0178 0.0201
Monocyte 0.0448 0.1331 0.0090 0.0177
Neutrophil 0.0758 0.1153 0.0097 0.0131
Platelet 0.1260 0.2012 0.0148 0.0179
RBC 0.0818 0.1586 0.0093 0.0141
SBP 0.0574 0.1041 0.0063 0.0070
WBC 0.0778 0.1286 0.0074 0.0114



...but a lot of room for 
growth

Martin, Kanai, Daly. Clinical use of genetic risk scores will exacerbate existing health disparities (in prep)

Masahiro Kanai

0.00

0.05

0.10

0.15

Bas
op

hil
DBP

MCHC
SBP HB

Ly
mph

oc
yte HT

BMI

Neu
tro

ph
il
WBC

Mon
oc

yte

Eos
ino

ph
il
RBC

MCH
Heig

ht
MCV

Plat
ele

t

Phenotype

R
2  (i

n 
U

KB
B)

A

0.00

0.02

0.04

0.06

0.08

HB

Ly
mph

oc
yte HT

SBP
DBP

Eos
ino

ph
il
WBC

Mon
oc

yte

Bas
op

hil

MCHC

Neu
tro

ph
il

Heig
ht
RBC

BMI

Plat
ele

t
MCH

MCV

Phenotype

R
2  (i

n 
BB

J)

B

Phenotype

R
2  (i

n 
U

KB
B 

Af
ric

an
 d

es
ce

nt
)

C

GWAS
cohort
(sumstats)

BBJ
UKBB

0.00

0.05

0.10

0.15

Bas
op

hil
DBP

MCHC
SBP HB

Ly
mph

oc
yte HT

BMI

Neu
tro

ph
il
WBC

Mon
oc

yte

Eos
ino

ph
il
RBC

MCH
Heig

ht
MCV

Plat
ele

t

Phenotype

R
2  (i

n 
U

KB
B)

A

0.00

0.02

0.04

0.06

0.08

HB

Ly
mph

oc
yte HT

SBP
DBP

Eos
ino

ph
il
WBC

Mon
oc

yte

Bas
op

hil

MCHC

Neu
tro

ph
il

Heig
ht
RBC

BMI

Plat
ele

t
MCH

MCV

Phenotype

R
2  (i

n 
BB

J)

B

Phenotype

R
2  (i

n 
U

KB
B 

Af
ric

an
 d

es
ce

nt
)

C

GWAS
cohort
(sumstats)

BBJ
UKBB

0.00

0.05

0.10

0.15

Bas
op

hil
DBP

MCHC
SBP HB

Ly
mph

oc
yte HT

BMI

Neu
tro

ph
il
WBC

Mon
oc

yte

Eos
ino

ph
il
RBC

MCH
Heig

ht
MCV

Plat
ele

t

Phenotype
R

2  (i
n 

U
KB

B)

A

0.00

0.02

0.04

0.06

0.08

HB

Ly
mph

oc
yte HT

SBP
DBP

Eos
ino

ph
il
WBC

Mon
oc

yte

Bas
op

hil

MCHC

Neu
tro

ph
il

Heig
ht
RBC

BMI

Plat
ele

t
MCH

MCV

Phenotype

R
2  (i

n 
BB

J)

B

Phenotype

R
2  (i

n 
U

KB
B 

Af
ric

an
 d

es
ce

nt
)

C

GWAS
cohort
(sumstats)

BBJ
UKBB

Note: differing axes

0.00

0.02

0.04

0.06

0.08

HB HT

Ly
mph

oc
yteDBP

Mon
oc

yteSBP

Eos
ino

ph
il

MCHC

Neu
tro

ph
il

Bas
op

hil
WBC

RBC
Heig

ht BMI

Plat
ele

t
MCV

MCH

Phenotype

R
2  (i

n 
BB

J)

A

0.00

0.05

0.10

0.15

HT

Bas
op

hilSBP
DBP

MCHC HB
BMI

Eos
ino

ph
il

Ly
mph

oc
yte

Neu
tro

ph
il
WBC

Mon
oc

yteRBC
MCV

Heig
ht
MCH

Plat
ele

t

Phenotype

R
2  (i

n 
U

KB
B)

B

0.00

0.01

0.02

0.03

HT
MCHC

Bas
op

hil
DBP

SBP HB
BMI

Neu
tro

ph
il

Eos
ino

ph
il

Ly
mph

oc
yteWBC

RBC

Mon
oc

yteMCH
MCV

Heig
ht

Plat
ele

t

Phenotype

R
2  (i

n 
U

KB
B 

Af
ric

an
 d

es
ce

nt
)

C

GWAS
cohort
(sumstats)

BBJ
UKBB



St
ud

y
Ta

rg
et

Single population 
mismatch

Recently admixed 
population

Ap
pr

oa
ch

Kalman filter Personalized 
LD Panel!"# !"$ !"% … !"&

!# !$ !% … !&

'# '$ '% '&(#

)# )$ )% )&(#

AND

OR

Multi-population

Multi-ancestry meta-analysis 
(MAMA)

New statistical approaches 
for genetic prediction

Under 

construction



Genetic prediction with GWAS 
from multiple populations

• Approach: Consider 
cross-population LD to 
recalibrate effect sizes in 
each population


• Related methods: LD 
score regression, MTAG


• Status: Implementing 
across global biobanks

Patrick 
Turley Hui Li Raymond 

Walters
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(MAMA)



GWAS stats differ across 
populations due to LD

• Causal effect sizes tend 
to be the same...


• ... but effect size 
estimates vary with LD 
differences across 
populations

̂βj =
M

∑
k=1

rj,kb + ϵ

̂βA,j = ̂βB,j



Key elements of MAMA

ΣjΩj
• Variance-covariance of 

genetic component


• More information shared 
when LD patterns and 
conditional effects are 
similar


• Variance-covariance of 
error and biases


• Less information shared 
when estimates are noisy 
or biased



Applications in real data
• Psychiatric disorders 

• Anthropometric traits (height, BMI, blood panels, etc)

Phenotype Population/ 
Location

N Cases N Controls Source

Schizophrenia Europe 34,989 113,075 PGC
Schizophrenia East Asia 13,305 16,244 PGC
Schizophrenia African Americans 6,981 2,564 PGC
Bipolar/Schizophrenia Hispanic/Latinos 3,982 4,553 PGC
Schizophrenia Africa ~18,000 ~18,000 NeuroGAP
PTSD U.S. minorities 21,845 58,769 PGC/CVB

Biobank Code Sample sizes
UK Biobank UKBB ~500k
Finnish biobank Finrisk ~50k
BioBank Japan Project BBJ ~162k
China Kadoorie Biobank CKB ~100k
PAGE (US minorities) PAGE ~50k



Lots of nice resources!
Some nice reviews: 


• Pasaniuc, B., and Price, A.L. (2017). Dissecting the genetics of complex traits 
using summary association statistics. Nat. Rev. Genet. 18, 117–127.


• Chatterjee, N., Shi, J., and García-Closas, M. (2016). Developing and evaluating 
polygenic risk prediction models for stratified disease prevention. Nat. Rev. Genet.


• Wray, N.R., Yang, J., Hayes, B.J., Price, A.L., Goddard, M.E., and Visscher, P.M. 
(2013). Pitfalls of predicting complex traits from SNPs. Nat. Rev. Genet. 14, 507–
515.


Coming soon:


• Martin, Kanai, Daly. Clinical use of genetic risk scores will exacerbate existing 
health disparities (in prep)


• Martin, Daly, Robinson, Hyman, & Neale. Predicting polygenic risk of psychiatric 
disorders (in revision)



Conclusions

• Polygenic risk scores have the potential to improve 
clinical models, but are currently likely to increase health 
disparities due to Eurocentric GWAS biases


• We need more diverse GWAS studies and new methods 
to address these major issues


• We are developing new methods that can use biobank-
scale data from diverse populations to improve the 
generalizability of genetic prediction across populations



Future directions
• How will we use PRS in the future?


• Biomarker for: behavioral interventions? differential 
diagnosis? personalized drug therapies? reducing cost 
of clinical trials?


• Tricky issues to resolve:


• Pleiotropy


• Healthcare economics: $ and life disparities by 
ethnicity?
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