



## Polygenic risk scores

Alicia Martin, PhD Stanley Center Global Plenary 2018 September 12, 2018

armartin@broadinstitute.org



### Outline

- What are polygenic risk scores?
- How to compute them
- Methods, interpretations, and uses
- Ancestry, health disparities, and ongoing/future directions



LETTERS

### **Race, Genetics and a Controversy**

 $\times$ 

April 2, 2018

#### SCIENCE

#### An Enormous Study of the Genes Related to Staying in School

Researchers have found 1,271 gene variants associated with years of formal education. That's important, but not for the obvious reasons.

ED YONG JUL 23, 2018

|                                   | The New York Times                                          |  |  |  |  |
|-----------------------------------|-------------------------------------------------------------|--|--|--|--|
| Opinion                           |                                                             |  |  |  |  |
| Why Progressives Should           |                                                             |  |  |  |  |
|                                   |                                                             |  |  |  |  |
| Embrace the Genetics of Education |                                                             |  |  |  |  |
| By Kathryn Paige Harden           |                                                             |  |  |  |  |
| Dr. Harden is a psychologist wr   | o studies now genetic factors shape adolescent development. |  |  |  |  |
| July 24, 2018                     | f 🕑 🖾 A 🔤 365                                               |  |  |  |  |

Why We Shouldn't Embrace the Genetics of Education

It's a trap!

By John Warner // July 26, 2018

43 COMMENTS 😡

COLLEGE DAG

WANT

## MIT<br/>Technology<br/>ReviewForecasts of geneticfate just got a lot more<br/>accurateby Antonio Regaladoby Antonio RegaladoFebruary 21,2018

The New York Times

#### Clues to Your Health Are Hidden at 6.6 Million Spots in Your DNA



Aug. 13, 2018

With a sophisticated new algorithm, scientists have found a way to forecast an individual's risks for five deadly diseases.

### How scientists are learning to predict your future with your genes



But what are the limits?

By Brian Resnick | @B\_resnick | brian@vox.com | Updated Aug 25, 2018, 9:35am EDT

### Insight & Intelligence

August 22, 2018

Why Do Polygenic Risk Scores Get So Much Hype?

**GWAS for Common Disease Variants Gains Prominence** 

Julianna LeMieux, Ph.D.

# The rise of the polygenic risk score



The

Future of

With You

Health Begins

"We propose the time has come to incorporate genetic risk scores into clinical practice"

- Previous criticisms: limited sample size
- Cheap test for insights into many diseases
- Integrate with other clinical factors for therapeutic decision-making

Knowles JW, Ashley EA (2018) Cardiovascular disease: The rise of the genetic risk score. PLoS Med 15(3): e1002546.

### A long shared history between PRS and breeding values

| Animals                                 |                                                                                                                                                                             |         | Plants                |                                                                                                                                                                                                                |  |  |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Domest                                  | tication ~12,000 years ago                                                                                                                                                  | 1860 -  | Dome<br>1860:         | stication ~12,000 years ago                                                                                                                                                                                    |  |  |
| 1886 C<br>re<br>pa                      | Concept of regression to describe<br>elationship between offspring and<br>arents (Galton)                                                                                   |         | 1903<br>1908          | Pure-line breeding theory (Johannsen)<br>Hardy-Weinberg law                                                                                                                                                    |  |  |
| 1908 La<br>(F                           | aw of population genetics<br>Hardy & Weinberg)                                                                                                                              | 1910 -  | 1908                  | Modern pedigree selection (Nilsson-Ehle)                                                                                                                                                                       |  |  |
| 1918 P<br>ar<br>(F<br>1935 In<br>1950 E | opulation genetics introduced as<br>n extension of the laws of inheritar<br>Fisher, Wright & Haldane)<br>nproved breeding methods (Lush)<br>stimation of breeding values as | nce     | 1920<br>1939<br>1945  | Mutation breeding (Stadler)<br>Concept of single-seed-descent breeding<br>method (Goulden)<br>Recurrent selection method of breeding (Hull)                                                                    |  |  |
| ra<br>1953 M<br>(V                      | andom effects (Henderson)<br>lodel for DNA structure<br>Natson & Crick)                                                                                                     | 1060    | 1952<br>1953          | Methods for double-haploid lines (Chase)<br>Model for DNA structure (Watson & Crick)                                                                                                                           |  |  |
| 1960 Q<br>1972 G<br>1975 B<br>(E        | luantitative genetics (Falconer)<br>enetic engingeering, first<br>scombinant DNA molecules (Berg)<br>est linear unbiased prediction<br>BLUP) (Henderson)                    | 1960 -  | 1970<br>1980:<br>1983 | Nobel Prize for the Green Revolution (Borlaug)<br>Biotechnology, from the early 1980s<br>Nobel Prize for discovery of mobile genetic<br>elements (McClintock)<br>Molecular markers used for improved selection |  |  |
| 1980sB<br>1990 M<br>Se                  | folecular markers used for improve<br>election (Lande & Thompson)                                                                                                           | s<br>ed | 1994<br>1998          | (Lande &Thompson)<br>First approval of commercial GM variety<br>Best linear unbiased prediction based on trait<br>and marker data (TM-BLUP), a form of genomic                                                 |  |  |
| 2001 In<br>ge<br>et                     | ntroduction and application of<br>enomic selection (Meuwissen<br>t al.)                                                                                                     | 2010 -  | 2001                  | selection, introduced (Bernardo)<br>Introduction of theoretical approaches to genomic<br>selection (Meuwissen et al.)                                                                                          |  |  |
| 2013 C                                  | RISPR-Cas9-based genome editi                                                                                                                                               | ing     | 2010:<br>2013         | Application of genomic prediction in plant breeding<br>CRISPR–Cas9-based genome editing                                                                                                                        |  |  |

Hickey, J.M., et al. (2017). Nat. Genet. 49, 1297–1303.

### LETTERS

## Common polygenic variation contributes to risk of schizophrenia and bipolar disorder

The International Schizophrenia Consortium\*

- The dark days of low-powered GWAS
- PRS show value of GWAS even in the absence of genome-wide significant loci



Figure 2 | Replication of the ISC-derived polygenic component in independent schizophrenia and bipolar disorder samples. Variance

## What is a polygenic risk score?



Genetic prediction of an individual's phenotype



Sum the products of genotypes × effect size estimates from a GWAS across the genome

## What is a polygenic risk score?



Genetic prediction of an individual's phenotype



Sum the products of genotypes × effect size estimates from a GWAS across the genome

#### **Fundamental choices:**

- Which SNPs to include
- What weights to apply

#### **Considerations:**

- LD
- P-value thresholds

### Most common steps to calculate PRS

- 1. Obtain GWAS summary statistics from the largest possible **discovery samples**
- 2. Obtain independent **target samples** with genome-wide data
- 3. Identify SNPs in common between both datasets
- 4. Deal with association redundancy due to LD
- Restrict to SNPs with p < various thresholds (e.g., 5e-8, 1e-6, 1e-4, 0.05, 1)
- Calculate PRS as sum of risk alleles weighted by β from GWAS
- Evaluate PRS accuracy by regressing trait in target sample onto PRS (e.g. R<sup>2</sup>)

### Most common steps to calculate PRS

- 1. Obtain GWAS summary statistics from the largest possible **discovery samples**
- 2. Obtain independent target samples with genome-wide data
- 3. Identify SNPs in common between both datasets
- 4. Deal with association redundancy due to LD
- Restrict to SNPs with p < various thresholds (e.g., 5e-8, 1e-6, 1e-4, 0.05, 1)</li>
- 6. Calculate PRS as sum of risk alleles weighted by β from GWAS
- 7. Evaluate **PRS accuracy** by regressing trait in target sample onto PRS (e.g. R<sup>2</sup>)

## 1. Obtain large GWAS



Trait info: <a href="http://www.ukbiobank.ac.uk/data-showcase/">http://www.ukbiobank.ac.uk/data-showcase/</a> All things UK Biobank GWAS: <a href="http://www.nealelab.is/uk-biobank/">http://www.nealelab.is/uk-biobank/</a>

## More powerful GWAS = more accurate predictor



Wray, N.R., et al. (2013). Nat. Rev. Genet. 14, 507–515.

## What do GWAS summary statistics contain?

Minimal useful info: variant ID, chromosome, position, risk and protective allele, sample size, p-value, effect size, standard error

Example: standing height



| variant       | minor_al<br>lele | minor_AF | low_confid<br>ence_varia<br>nt | n_complete_s<br>amples | AC       | ytx       | beta      | se       | tstat     | pval     |
|---------------|------------------|----------|--------------------------------|------------------------|----------|-----------|-----------|----------|-----------|----------|
| 1:15791:C:T   | Т                | 5.44E-09 | TRUE                           | 360388                 | 3.92E-03 | 3.47E-03  | 1.80E+01  | 1.78E+02 | 1.01E-01  | 9.19E-01 |
| 1:69487:G:A   | А                | 5.76E-06 | TRUE                           | 360388                 | 4.15E+00 | -8.75E-02 | -4.13E-02 | 3.5E-01  | -1.18E-01 | 9.06E-01 |
| 1:69569:T:C   | С                | 1.88E-04 | TRUE                           | 360388                 | 1.36E+02 | -2.08E+00 | -4.70E-02 | 6.27E-02 | -7.5E-01  | 4.54E-01 |
| 1:139853:C:T  | Т                | 5.67E-06 | TRUE                           | 360388                 | 4.09E+00 | -1.06E-01 | -4.21E-02 | 3.5E-01  | -1.2E-01  | 9.04E-01 |
| 1:692794:CA:C | С                | 1.11E-01 | FALSE                          | 360388                 | 7.97E+04 | 1.02E+02  | 7.97E-04  | 2.90E-03 | 2.75E-01  | 7.83E-01 |
| 1:693731:A:G  | G                | 1.16E-01 | FALSE                          | 360388                 | 8.35E+04 | -6.93E+01 | -1.44E-03 | 2.74E-03 | -5.24E-01 | 6.00E-01 |
| 1:707522:G:C  | С                | 9.73E-02 | FALSE                          | 360388                 | 7.01E+04 | -7.86E+00 | 2.47E-04  | 3.08E-03 | 8.02E-02  | 9.36E-01 |
| 1:717587:G:A  | A                | 1.57E-02 | FALSE                          | 360388                 | 1.13E+04 | 5.47E+00  | 1.13E-03  | 7.35E-03 | 1.54E-01  | 8.77E-01 |
| 1:723329:A:T  | Т                | 1.73E-03 | FALSE                          | 360388                 | 1.25E+03 | 3.87E+01  | 2.22E-02  | 2.17E-02 | 1.02E+00  | 3.06E-01 |

## Most common steps to calculate PRS

- 1. Obtain GWAS summary statistics from the largest possible **discovery samples**
- 2. Obtain independent **target samples** with genome-wide data
- 3. Identify SNPs in common between both datasets
- 4. Deal with association redundancy due to LD
- Restrict to SNPs with p < various thresholds (e.g., 5e-8, 1e-6, 1e-4, 0.05, 1)</li>
- 6. Calculate PRS as sum of risk alleles weighted by β from GWAS
- 7. Evaluate **PRS accuracy** by regressing trait in target sample onto PRS (e.g. R<sup>2</sup>)

## 2. Independent target cohort must be independent

Prediction "accuracy" measures will be overestimated if discovery and target are not independent. This can arise if:

- The same people are in both cohorts
- There are close relatives between the two
- SNPs are selected from meta-analysis of discovery + target



## Choose your favorite dataset

Most people like phenotypes, but...



The 1000 Genomes Project Consortium. (2015). Nature 526, 68–74.

### Most common steps to calculate PRS

- 1. Obtain GWAS summary statistics from the largest possible **discovery samples**
- 2. Obtain independent **target samples** with genome-wide data
- 3. Identify SNPs in common between both datasets
- 4. Deal with association redundancy due to LD
- Restrict to SNPs with p < various thresholds (e.g., 5e-8, 1e-6, 1e-4, 0.05, 1)
- 6. Calculate PRS as sum of risk alleles weighted by β from GWAS
- 7. Evaluate **PRS accuracy** by regressing trait in target sample onto PRS (e.g. R<sup>2</sup>)



#### Phase and impute data to help maximize overlap

### Most common steps to calculate PRS

- 1. Obtain GWAS summary statistics from the largest possible **discovery samples**
- 2. Obtain independent **target samples** with genome-wide data
- 3. Identify SNPs in common between both datasets
- 4. Deal with association redundancy due to LD
- Restrict to SNPs with p < various thresholds (e.g., 5e-8, 1e-6, 1e-4, 0.05, 1)</li>
- 6. Calculate PRS as sum of risk alleles weighted by β from GWAS
- 7. Evaluate **PRS accuracy** by regressing trait in target sample onto PRS (e.g. R<sup>2</sup>)

### 4. Account for LD



Two primary approaches:

- LD clumping (heuristic, less good)
  - In PLINK, --clump
- Model LD! LDPred (better, but harder to run)



## **Clumping with PLINK**

Example:

```
plink --bfile [reference LD panel] \
--clump [summary statistics] \
--clump-field [summary statistics p-value column name] \
--clump-snp-field [summary statistics snp column name] \
--clump-p1 1 \
--clump-p2 1 \
--clump-r2 0.5 \
--clump-kb 250 \
--out [output filename]
```

### Most common steps to calculate PRS

- 1. Obtain GWAS summary statistics from the largest possible **discovery samples**
- 2. Obtain independent **target samples** with genome-wide data
- 3. Identify SNPs in common between both datasets
- 4. Deal with association redundancy due to LD
- Restrict to SNPs with p < various thresholds (e.g., 5e-8, 1e-6, 1e-4, 0.05, 1)
- 6. Calculate PRS as sum of risk alleles weighted by β from GWAS
- 7. Evaluate **PRS accuracy** by regressing trait in target sample onto PRS (e.g. R<sup>2</sup>)

### 5. Use various p thresholds



Use p-thresholds from 5e-8, 1-e7,...0.05...1 Report results from all thresholds

### For PLINK

Create a file with multiple thresholds, for example: [Threshold name] [lower bound] [upper bound] 0.0000005 s1 0 s2 0.00001 0 s3 0.0001 0 s4 0 0.001 **s**5 0 0.01 0.05 **s**6 0 0.1 s7 0 0.2 **s8** 0 0.5 0 **s**9 1 s10 0

### Most common steps to calculate PRS

- 1. Obtain GWAS summary statistics from the largest possible **discovery samples**
- 2. Obtain independent **target samples** with genome-wide data
- 3. Identify SNPs in common between both datasets
- 4. Deal with association redundancy due to LD
- Restrict to SNPs with p < various thresholds (e.g., 5e-8, 1e-6, 1e-4, 0.05, 1)
- Calculate PRS as sum of risk alleles weighted by β from GWAS
- 7. Evaluate **PRS accuracy** by regressing trait in target sample onto PRS (e.g. R<sup>2</sup>)

### 6. Calculate PRS

- $PRS_j = \Sigma [\beta_{i,discovery} * SNP_{ij}]$ 
  - β<sub>i,discovery</sub> = effect size in discovery sample from
    - linear regression (continuous trait)
    - logistic regression (binary trait;  $\beta = \log(OR)$ )
- SNP<sub>ij</sub> = # alleles (0,1,2) for SNP i of person j in target sample
- In PLINK, --score.

### In PLINK

Example:

```
plink --bfile [best guess genotypes] \
--extract [clumped snps] \
--q-score-range [range file] [summary stats] [variant ID
column #] [p-value column #] [header] \
--score [summary stats] [variant ID column #] [allele column
#] [effect size column #] \
--out [output file]
```

### Most common steps to calculate PRS

- 1. Obtain GWAS summary statistics from the largest possible **discovery samples**
- 2. Obtain independent **target samples** with genome-wide data
- 3. Identify SNPs in common between both datasets
- 4. Deal with association redundancy due to LD
- Restrict to SNPs with p < various thresholds (e.g., 5e-8, 1e-6, 1e-4, 0.05, 1)
- 6. Calculate PRS as sum of risk alleles weighted by  $\beta$  from GWAS
- 7. Evaluate **PRS accuracy** by regressing trait in target sample onto PRS (e.g. R<sup>2</sup>)

### 7. Evaluate PRS accuracy

- For continuous traits, this is simply the R<sup>2</sup> from regressing trait ~ PRS in target + covariates
- Trickier for binary (e.g., case-control) data due to ascertainment
  - Often Nagelkerke's R<sup>2</sup> is reported. Unfortunate, because this depends on prevalence and case:control ratio.



### 7. Evaluate PRS accuracy

- For continuous traits, this is simply the R<sup>2</sup> from regressing trait ~ PRS in target + covariates
- Trickier for binary (e.g., case-control) data due to ascertainment
  - Often Nagelkerke's R<sup>2</sup> is reported. Unfortunate, because this depends on prevalence + case:control ratio.
  - Better: liability-scale R<sup>2</sup>

### 7. Please report comparable R<sup>2</sup> ! (thrilling stuff, I know)

#### TABLE I. Brief description of R<sup>2</sup> measures used in this study and their theoretical expectation

| Brief description                                                                 | Notation and formula                                                                                                                | Expectation                                    |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| $\mathbb{R}^2$ on the observed scale                                              | $R_o^2 = 1 - rac{\sum\limits_{i}^{N} (y_i - \hat{y})^2}{\sum\limits_{i}^{N} (y_i - \hat{y})^2}$                                    | $h_l^2 \frac{z^2}{K(1-K)}$                     |
| Cox and Snell's $\mathbb{R}^2$ on the observed scale                              | $R_{\text{C\&S}}^2 = 1 - \left\{ \frac{\text{Likelihood}_{\text{null}}}{\text{Likelihood}_{\text{full}}} \right\}^{2/N}$            | $h_l^2 \frac{z^2}{K(1-K)}$                     |
| Nagelkerke's R <sup>2</sup> on the observed scale (hard to compare)               | $R_N^2 = \frac{R_{C\&S}^2}{1 - (\text{Likelihood}_{\text{null}})^{2/N}}$                                                            | $\frac{R_{C\&S}^2}{1-K^{2K} + (1-K)^{2(1-K)}}$ |
| R <sup>2</sup> on the liability scale                                             | $R_l^2 = R_o^2 \frac{\hat{K}(1-\hat{K})}{z^2}$                                                                                      | $h_l^2$                                        |
| R <sup>2</sup> on the probit liability scale (easy to compare!)                   | $R_{\text{probit}}^2 = \frac{\operatorname{var}(b_{\operatorname{probit}}g_i)}{\operatorname{var}(b_{\operatorname{probit}}g_i)+1}$ | $h_l^2$                                        |
| R <sup>2</sup> on the logit liability scale                                       | $R_{\text{logit}}^2 = \frac{\operatorname{var}(\hat{b}_{\text{logit}}g_i)}{\operatorname{var}(\hat{b}_{\text{logit}}g_i) + 3.29}$   | $h_l^2$                                        |
| $R^2$ on the liability scale using AUC                                            | $R_{\rm AUC}^2 = \frac{2Q^2}{(m_2 - m)^2 + Q^2 m(m - t) + m_2(m_2 - t)}$                                                            | $h_l^2$                                        |
| $\mathbb{R}^2$ on the liability scale when using ascertained case-control studies | $R_{l_{oc}}^2 = \frac{R_{o_{cc}}^2 C}{1 + R_{o_{cc}}^2 \theta C}$                                                                   | $h_l^2$                                        |

*y*, observations that are 0 or 1 for unaffected and affected individuals;  $h_i^2$ , heritability on the liability scale, in this context the proportion of variance on the liability scale explained by the genetic profile; *K*, population prevalence; *z*, the height of a normal density curve at the point according to *K*; *g*, the sum of all additive genetic factors in the estimated genetic predictor; *b*, regression coefficient from generalized linear model; *m*, the mean liability for cases; *m*<sub>2</sub>, the mean liability for controls; *t*, the threshold on the normal distribution that truncates the proportion of disease prevalence *K*; *Q*, the inverse of the cumulative density function of the normal distribution up to values of AUC; *C* and  $\theta$ , correcting factors for ascertainment.

#### Lee, S.H., et al. (2012). Genet. Epidemiol. 36, 214–224.

## So now you have a PRS...

- What are polygenic risk scores?
- How to compute them
- Methods, interpretations, and uses
- Ancestry, health disparities, and ongoing/future directions

## The rise of the polygenic risk score



### No discussion of ancestry!

"We propose the time has come to incorporate genetic risk scores into clinical practice"

- Previous criticisms: limited sample size
- Cheap test for insights into many diseases
- Integrate with other clinical factors for therapeutic decision-making

Knowles JW, Ashley EA (2018) Cardiovascular disease: The rise of the genetic risk score. PLoS Med 15(3): e1002546.

## Genomics has a diversity problem



## Causal effects are mostly shared across populations



## Predictable basis of PRS disparities

Prediction accuracy decays with  $F_{\mbox{\scriptsize ST}}$ 

Why?

- GWAS best-powered to discover common variants

![](_page_38_Figure_5.jpeg)

Please cite this article in press as: Martin et al., Human Demographic History Impacts Genetic Risk Prediction across Diverse Populations, The American Journal of Human Genetics (2017), http://dx.doi.org/10.1016/j.ajhg.2017.03.004

#### ARTICLE

#### Human Demographic History Impacts Genetic Risk Prediction across Diverse Populations

Alicia R. Martin,<sup>1,2,3,4</sup> Christopher R. Gignoux,<sup>4</sup> Raymond K. Walters,<sup>1,2,3</sup> Genevieve L. Wojcik,<sup>4</sup> Benjamin M. Neale,<sup>1,2,3</sup> Simon Gravel,<sup>5,6</sup> Mark J. Daly,<sup>1,2,3</sup> Carlos D. Bustamante,<sup>4</sup> and Eimear E. Kenny<sup>7,8,9,10,\*</sup>

- Polygenic height scores are substantially different across populations
- These differences are not meaningful

![](_page_39_Figure_6.jpeg)

## Coalescent model for simulation framework

![](_page_40_Figure_1.jpeg)

Demographic model: Gravel, S., et al. (2011). Proc. Natl. Acad. Sci. U. S. A. 108, 11983–11988. msprime: Kelleher, J., Etheridge, A.M., and Mcvean, G. (2016). PLoS Comput Biol 1–22.

## Simulation overview

- Simulate genotypes (AFR, EUR, EAS)
- 2. Assign evenly spaced causal variants

![](_page_41_Figure_4.jpeg)

![](_page_41_Figure_5.jpeg)

4. Define EUR cases, controls (10k each)

![](_page_41_Picture_7.jpeg)

6. Compute PRS<sub>INFER</sub> across populations

 $X = \sum_{i=1}^{n} g_i \beta_i -$ 

## **PRS**<sub>TRUE</sub> is not significantly different across populations

#### **True causal variants** 80 60 Population Density AFR EAS EUR 20 0

0.00

PRS<sub>True</sub>

0.01

0.02

-0.01

-0.02

## PRSINFER is highly stratified across populations

![](_page_43_Figure_1.jpeg)

## Unpredictable PRS biases across populations

![](_page_44_Figure_1.jpeg)

## Unpredictable PRS biases across populations

#### Analogous to different traits:

![](_page_45_Figure_2.jpeg)

For a given trait, impossible to predict a priori which population will have highest inferred risk!

## Staggering PRS disparities across populations

![](_page_46_Figure_1.jpeg)

## Staggering PRS disparities across populations

![](_page_47_Figure_1.jpeg)

**Hailiang Huang** 

![](_page_48_Picture_3.jpeg)

Chia-Yen Chen

Psychiatric Genomics Consortium

![](_page_48_Figure_6.jpeg)

P-value threshold

Despite 3X larger sample sizes in Europeans, prediction in East Asians performs best with matched training data

Other examples: BMI (Akiyama et al, 2018 Nat Gen) SCZ (Li et al, 2017 Nat Gen)

![](_page_49_Picture_1.jpeg)

Masahiro Kanai

Goal: Compare PRS accuracy for 17 traits in UKBB and BBJ

- Randomly set aside 5,000 individuals from each biobank
  - Match BBJ proportion with disease ascertainment
- Run GWAS on all other BBJ individuals. Match numbers in UKBB.

#### Do we see symmetric, comparable PRS accuracy?

![](_page_50_Picture_1.jpeg)

Masahiro Kanai

![](_page_50_Figure_3.jpeg)

![](_page_51_Picture_1.jpeg)

Masahiro Kanai

![](_page_51_Figure_3.jpeg)

![](_page_52_Picture_1.jpeg)

![](_page_52_Figure_2.jpeg)

![](_page_52_Figure_3.jpeg)

## Trans-ethnic genetic correlation is quite high

![](_page_53_Figure_1.jpeg)

### **Cohort definition matters!**

- UKBB has a "healthy volunteer" bias (healthier than average population)
- BBJ cohort is ascertained for 47 diseases (sicker than average population)
  - Manually transcribe patients' data from medical records in each hospital, read through and re-enter into BBJ's electronic database

![](_page_54_Picture_4.jpeg)

### **Cohort definition matters!**

|            | Observed h <sup>2</sup> | Observed h <sup>2</sup> |          |           |
|------------|-------------------------|-------------------------|----------|-----------|
| Trait      | (BBJ)                   | (UKBB)                  | SE (BBJ) | SE (UKBB) |
| Basophil   | 0.0441                  | 0.0213                  | 0.0121   | 0.0050    |
| BMI        | 0.1361                  | 0.1955                  | 0.0087   | 0.0090    |
| DBP        | 0.0430                  | 0.0984                  | 0.0051   | 0.0068    |
| Eosinophil | 0.0586                  | 0.1354                  | 0.0093   | 0.0167    |
| Hb         | 0.0452                  | 0.1054                  | 0.0053   | 0.0107    |
| Height     | 0.3059                  | 0.3675                  | 0.0187   | 0.0208    |
| Ht         | 0.0457                  | 0.0942                  | 0.0056   | 0.0093    |
| Lymphocyte | 0.0516                  | 0.1318                  | 0.0073   | 0.0118    |
| MCH        | 0.1309                  | 0.1942                  | 0.0184   | 0.0210    |
| MCHC       | 0.0481                  | 0.0402                  | 0.0080   | 0.0052    |
| MCV        | 0.1447                  | 0.1994                  | 0.0178   | 0.0201    |
| Monocyte   | 0.0448                  | 0.1331                  | 0.0090   | 0.0177    |
| Neutrophil | 0.0758                  | 0.1153                  | 0.0097   | 0.0131    |
| Platelet   | 0.1260                  | 0.2012                  | 0.0148   | 0.0179    |
| RBC        | 0.0818                  | 0.1586                  | 0.0093   | 0.0141    |
| SBP        | 0.0574                  | 0.1041                  | 0.0063   | 0.0070    |
| WBC        | 0.0778                  | 0.1286                  | 0.0074   | 0.0114    |

## ...but a lot of room for growth

![](_page_56_Picture_1.jpeg)

Masahiro Kanai

![](_page_56_Figure_3.jpeg)

#### Note: differing axes

### New statistical approaches for genetic prediction Under construction

**Multi-population** 

![](_page_57_Picture_2.jpeg)

![](_page_57_Picture_3.jpeg)

Study

Target

Approach

![](_page_57_Picture_5.jpeg)

**Multi-ancestry meta-analysis** (MAMA)

**Kalman filter**  $R_3 \qquad R_{n-1}$ 

mismatch

Single population **Recently admixed** population

![](_page_57_Figure_9.jpeg)

Personalized LD Panel

## Genetic prediction with GWAS from multiple populations

## Multi-population AND

Study

Target

Approach

Multi-ancestry meta-analysis (MAMA)

- Approach: Consider cross-population LD to recalibrate effect sizes in each population
- Related methods: LD score regression, MTAG
- **Status**: Implementing across global biobanks

![](_page_58_Picture_6.jpeg)

![](_page_58_Picture_7.jpeg)

![](_page_58_Picture_8.jpeg)

Patrick Turley

Hui Li

Raymond Walters

## GWAS stats differ across populations due to LD

$$\hat{\beta}_{j} = \sum_{k=1}^{M} r_{j,k}b + \epsilon$$

- Causal effect sizes tend to be the same...
- ... but effect size
   <u>estimates</u> vary with LD
   differences across
   populations

![](_page_59_Picture_4.jpeg)

![](_page_59_Figure_5.jpeg)

## Key elements of MAMA

![](_page_60_Picture_1.jpeg)

- Variance-covariance of genetic component
- More information shared when LD patterns and conditional effects are similar
- Variance-covariance of error and biases
- Less information shared when estimates are noisy or biased

## Applications in real data

#### Psychiatric disorders

| Phenotype             | Population/<br>Location | N Cases | N Controls | Source   |
|-----------------------|-------------------------|---------|------------|----------|
| Schizophrenia         | Europe                  | 34,989  | 113,075    | PGC      |
| Schizophrenia         | East Asia               | 13,305  | 16,244     | PGC      |
| Schizophrenia         | African Americans       | 6,981   | 2,564      | PGC      |
| Bipolar/Schizophrenia | Hispanic/Latinos        | 3,982   | 4,553      | PGC      |
| Schizophrenia         | Africa                  | ~18,000 | ~18,000    | NeuroGAP |
| PTSD                  | U.S. minorities         | 21,845  | 58,769     | PGC/CVB  |

#### Anthropometric traits (height, BMI, blood panels, etc)

| Biobank                      | Code    | Sample sizes |
|------------------------------|---------|--------------|
| UK Biobank                   | UKBB    | ~500k        |
| Finnish biobank              | Finrisk | ~50k         |
| <b>BioBank Japan Project</b> | BBJ     | ~162k        |
| China Kadoorie Biobank       | CKB     | ~100k        |
| PAGE (US minorities)         | PAGE    | ~50k         |

### Lots of nice resources!

Some nice reviews:

- Pasaniuc, B., and Price, A.L. (2017). Dissecting the genetics of complex traits using summary association statistics. Nat. Rev. Genet. *18*, 117–127.
- Chatterjee, N., Shi, J., and García-Closas, M. (2016). Developing and evaluating polygenic risk prediction models for stratified disease prevention. Nat. Rev. Genet.
- Wray, N.R., Yang, J., Hayes, B.J., Price, A.L., Goddard, M.E., and Visscher, P.M. (2013). Pitfalls of predicting complex traits from SNPs. Nat. Rev. Genet. 14, 507– 515.

Coming soon:

- Martin, Kanai, Daly. Clinical use of genetic risk scores will exacerbate existing health disparities (in prep)
- Martin, Daly, Robinson, Hyman, & Neale. Predicting polygenic risk of psychiatric disorders (in revision)

### Conclusions

- Polygenic risk scores have the potential to improve clinical models, but are currently likely to <u>increase health</u> <u>disparities</u> due to Eurocentric GWAS biases
- We need more <u>diverse GWAS studies</u> and <u>new methods</u> to address these major issues
- We are developing new methods that can use biobankscale data from diverse populations to improve the generalizability of genetic prediction across populations

### Future directions

- How will we use PRS in the future?
  - Biomarker for: behavioral interventions? differential diagnosis? personalized drug therapies? reducing cost of clinical trials?
- Tricky issues to resolve:
  - Pleiotropy
  - Healthcare economics: \$ and life disparities by ethnicity?

## Acknowledgments

#### **MGH/Broad**

- Mark Daly
- Ben Neale
- Patrick Turley
- Raymond Walters
- Duncan Palmer
- Hailiang Huang
- Chia-Yen Chen
- Masahiro Kanai
- Elizabeth Atkinson
- Caitlin Carey
- Alex Bloemendal
- Karestan Koenen
- Giulio Genovese
- Elise Robinson
- Steve Hyman

#### Stanford

- Carlos Bustamante
- Genevieve Wojcik

#### Mt. Sinai

Eimear Kenny

#### **UC Denver**

Chris Gignoux

#### McGill

• Simon Gravel

#### FIMM

- Samuli Ripatti
- Juuka Koskela
- Juulia Partanen
- Sini Kerminen
- Matti Pirinen
- Aarno Palotie

#### RIKEN

- Y. Okada
- Yoichiro Kamatani

#### Questions/comments?

#### armartin@broadinstitute.org

#### <u>Consortia</u> 1000 Genomes Project

#### **NeuroGAP-Psychosis**

#### PGC-SCZ

• Max Lam

#### SSGAC

- Hui Li
- Dan Benjamin
- David Cesarini
- Meghan Zacher

#### Funding

• K99MH117229

![](_page_65_Picture_49.jpeg)