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Technological advances have made it feasible to conduct high-
throughput small-molecule screens based on visual phenotypes 
of individual cells, using automated imaging and analysis. These 
screens are rapidly moving from being small, proof-of-principle 
tests to robust and widespread screens of hundreds of thousands 
of compounds. Automated imaging screens maximize the 
information obtained in an initial screen and improve the ability 
to select high-quality leads. In this Perspective, I highlight the 
key steps necessary for conducting a high-throughput image-
based chemical compound screen.

Visual assays, in which cells are fluorescently labeled and observed using a 
microscope, are distinguished among other types of assays in the amount 
and quality of information acquired in a single assay sample. Compared 
with biochemical assays, they probe a chemical’s activity on a cellular 
phenotype rather than simply testing for binding to a particular isolated 
protein that may be, in the end, less physiologically relevant. Image-based 
assays also compare favorably to other types of cell-based assays (for 
example, reporter assays using plate readers) because multiple features 
of the cell’s status and health can be observed, including very general 
phenotypes, such as overall cell health, and very specific phenotypes, 
such as localization of a particular phosphorylated form of a signaling 
protein. Even a single label allows multiple features of the cell’s state to 
be measured. For example, a simple DNA stain allows counting the cells, 
plus measurement of each cell’s DNA content and morphology, which 
together indicate the cell’s phase in the cell cycle and its apoptotic state. 
Image-based assays are almost always further “multiplexed” by using 
multiple fluorescent labels to report on several components of the cell 
simultaneously1. Further, most image-based assays collect information 
from individual cells, which is often necessary to accurately reflect the 
underlying biological process—behavior that may be hidden in whole-
population measurements2,3. This is particularly the case when only a 
subset of cells is expected to show the phenotype, for example when a cell 
mixture has been used for the screen. The rich information that can be 
collected from individual cells has led image-based assays to be dubbed 
“high in information content” or “high-content.”

However, until roughly ten years ago, visual assays were nearly always 
very low-throughput, requiring tedious manual collection of images fol-
lowed by visual inspection of tens of thousands of images. Since then 
two major technologies, automated microscopes and cell image analy-
sis software, have gained traction and rapidly made image-based assays 
compatible with high-throughput screening (HTS) of small-molecule 

libraries; the resulting process has earned the name “high-content screen-
ing” (HCS)4. The pharmaceutical industry has provided a user base large 
enough to push the development of the systems needed for image-based 
screening; indeed, though companies often do not publish the results 
of their large screens, there are notable exceptions5–9, and they remain 
among the largest users of these technologies10. The explosion of high-
throughput RNA interference experiments to determine gene function 
has also driven the maturation and spread of these technologies11–13. The 
result of these developments is that we can now automatically acquire 
and score images in large-scale screens. However, most published image-
based chemical screens have been at the assay development stage, and the 
major use of the technology, at least in the pharmaceutical industry, is 
at the secondary-screen stage. Indeed, image-based assays are still time 
consuming to conduct and interpret, so instead a plate reader–based assay 
ought to be pursued if it would sufficiently reveal the primary readout 
of interest and if additional phenotypes from the primary sample are 
of little interest. Still, image-based primary screens of 10,000–100,000 
compounds are rapidly becoming more common, and their power to 
maximize the information obtained in an initial screen and improve 
the ability to select high-quality leads indicates that they will soon be a 
standard primary screening modality.

Here, I overview the current state of each key component necessary 
for implementing a successful image-based chemical screen (Fig. 1), and 
point to available resources and further reading. Although I have focused 
here on cell-based screens because they are by far the most automated, it 
should be noted that several efforts are under way to develop methods for 
the automated sample preparation, imaging, and (most challenging of all) 
image analysis of whole organisms, such as zebrafish14, Caenorhabditis 
elegans15 and Arabidopsis thaliana16.

Biological assay development
Image-based chemical assays begin as standard microscopy assays, in 
which, typically, the localization or amount of a fluorescently labeled 
protein or the morphology of the cell responds to a biological change of 
interest. Establishing such an assay might involve months of perfecting 
immunostaining protocols, tagging a protein of interest with green fluo-
rescent protein or its various-colored derivatives, engineering a cell line 
to respond to stimuli appropriately, or developing methods to extract 
primary cells. Developing a suitable assay to probe the phenotype of 
interest is critical to the quality of the screen’s data. ‘You get what you 
screen for’, so ideally the assay system should probe the desired biological 
outcome as closely as possible rather than pursuing artificial proxies, to 
the extent that it is practical. For example, creating realistic cell-based 
models for disease and assaying for reversal of the phenotype is perhaps 
the best type of assay, but this is much less common than measuring 
the level or localization of a signaling molecule thought to be in the 
disease’s pathway.
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Once the assay is robust, the scale-up process begins to automate and 
miniaturize the assay to a 96-, 384- or 1,536-well plate format to conserve 
labor and reagents. Higher density formats have been developed (for 
example, a cell microarray format17), but have yet to become  routine. A 
helpful general guide to assay development (though it does not yet cover 
image-based assays) has been developed by Eli Lilly and Company and 
the US National Institutes of Health (NIH) Chemical Genomics Center 
(http://www.ncgc.nih.gov/guidance/index.html). Also, this issue includes 
a Review from Inglese et al. that provides a guide to developing assays 
for high-throughput screening and is particularly aimed at scientists that 
are new to the field18.

Image acquisition and storage
After an assay has been optimized and sample preparation has been auto-
mated, the samples are imaged on automated microscopes. Initial micro-
scopes for high-throughput image-based screening were simply standard 
fluorescence microscopes with automation added to handle multiwell 

plate formats, including automatic stage movement and focusing. First 
commercialized in 1999 (the ArrayScan from Cellomics), the instruments 
have become increasingly automated. Though options have thinned after 
the acquisition of many smaller companies, a wide variety of instruments 
are still available that differ in speed, image quality/resolution and cost. 
Other commercial instrument options include integration with auto-
mation (for example, automatic plate handlers so that stacks of plates 
are automatically loaded, and pipettors for adding reagents during the 
screen), environmental control of heat and humidity for live experiments, 
and ability to acquire confocal images. The ability to export images in a 
standard image file format (for example, the OME-TIFF format, http://
www.loci.wisc.edu/ome/ome-tiff.html) is another critical feature that is 
necessary for using third-party image analysis and data exploration tools, 
and even for convenient viewing of images from a screen. Commercial 
options have recently been reviewed, including listings of the available 
instruments and their features19–22. Today, most active screening groups 
use instruments that are sufficiently automated to handle dozens of plates 
without user intervention. Most of these instruments are reliable and 
mature technologies. The only common headache, aside from software/
network/database integration, is unreliable automatic focusing for certain 
sample types and plate types, and with certain instruments.

Avoiding prepackaged commercial instruments, several academic 
groups have made the effort to construct complete image acquisition sys-
tems from component parts to meet cost and/or flexibility demands23–25. 
These instruments typically produce images as high in quality as those 
produced by commercial instruments, depending on the quality of the 
component parts that are used. The trade-off is rather the labor and 
expertise required for assembly. Beyond these, an open-source software 
package in development may change the landscape of this field in the 
future: MicroManager software controls microscope hardware, theo-
retically enabling convenient construction of a build-it-yourself high-
throughput microscope (µManager, http://www.micro-manager.org/). 
This open-source package may allow a lower cost of entry such that auto-
mated imaging becomes more widely available. It should also enable 
analysis of unusual sample formats (for example, cell microarrays17) 
or unusual experimental protocols (for example, three-dimensional or 
time-lapse imaging).

Along with image acquisition, a solution for image storage must be 
developed. Typical screens collect several images per sample; with a typi-
cal image requiring 1 MB of storage space, a 100,000-compound screen 
requires ~500 GB (0.5 TB) of disk space. Storing the images within a 
database purchased along with a commercial system typically works well, 
but it can be problematic to integrate several systems, even from the same 
vendor, or to expand the database itself. In some cases, organizing images 
in a simple, file-system-based hierarchy may be preferred. Although the 
open-source software project Open Microscopy Environment (http://
openmicroscopy.org/) is not widely used for large numbers of large 
screens, it has proven useful for the storage and organization of images 
in smaller-scale laboratories.

For many scientists, the simplest solution for both sample preparation 
and image acquisition may be to make use of one of the many exist-
ing screening centers with this technology. In the United States, image-
based screening capabilities are available via some of the NIH-sponsored 
Molecular Library Screening Center Network sites (http://mli.nih.gov/
mlscn/descriptions.php), the National Cancer Institute (NCI)-spon-
sored Initiative for Chemical Genetics (http://www.broad.harvard.edu/
chembio/icg/) and the Genomics Institute of the Novartis Foundation 
(http://www.gnf.org/collaborations/academic-screening-program). 
Furthermore, funding specifically for chemical screens is available from 
the NIH (http://mli.nih.gov/mlscn/resources.php). In addition, the 
Society for Biomolecular Sciences maintains a partial list of academic 
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Figure 1  The key steps necessary for conducting a high-throughput image-
based chemical compound screen.
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screening centers throughout the world (http://
sbsonline.org/ascd/index.php).

Image analysis
After acquisition, image analysis is required 
to extract quantitative measurements from 
the images for each sample. Image analysis for 
common phenotypes in well-behaved (non-
clumped) cell types has been well solved by 
commercial software5–7,9,26,27. This software is 
usually sold in a bundle with the image acquisi-
tion hardware, but more recently it has become 
available from third-party software vendors28,29. 
Cell counting, protein expression, translocation 
(including translocation from the cytoplasm to 
the nucleus and translocation of proteins from 
a smooth distribution to a speckled distribu-
tion), and neurite outgrowth, which are assays 
frequently used in the drug-development indus-
try that has funded much of this technology 
development, are readily measured by commer-
cially available software (Fig. 2a). Furthermore, 
commercial software can sometimes be ‘tricked’ 
into measuring the phenotype of interest by 
adapting the standard applications to a different 
purpose. For example, to measure cholesterol 
accumulation in images of cells stained with 
filipin A, a high threshold identified the lyso-
some-like storage organelles (LSOs) while a low 
threshold identified the area occupied by cells, 
thereby enabling intensities to be appropriately 
normalized for cell size30 (Fig. 2b).

However, analyses that cannot be achieved 
with the existing applications in commercial 
software remains challenging31. Some investi-
gators have turned to tedious manual inspec-
tion of images for scoring; example phenotypes 
include cytokinesis, wound healing, nuclear 
localization, Golgi-to-plasma membrane trans-
port and aggresome formation32–36 (Fig. 2c). 
Other researchers have developed custom scor-
ing software, programmed from scratch or by 
developing macros in an existing open-source 
tool such as ImageJ (http://rsb.info.nih.gov/ij). 
This usually requires months of development 
and validation; example phenotypes include 
focal adhesions, centrosome duplication, cell 
cycle progression, apoptosis and a wide variety 
of morphological features of cells, nuclei and 
organelles in combination with various fluo-
rescent labels8,23,37–41 (Fig. 2d). Unfortunately, 
these custom solutions are rarely reused for 
other screens because they are so specifically 
tailored to particular experimental conditions.

Clearly a more flexible solution to image 
analysis would increase the speed of assay 
development for high-throughput image-based 
screens. Academic groups, including mine, have 
been collaborating on a pair of more general, 
open-source software tools that aims to simplify 
the process. Rather than designing a custom 
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Figure 2  A sampling of image-based phenotypes scored in recent screens. (a) Negative (left) and positive 
(right) controls in an assay for gap junction blockers, scored using a commercial software algorithm to 
identify dye-positive cells that have received the dye, through gap junctions, from donor cells that were 
preloaded with dye. 486,000 compounds were screened6. Images are reproduced with permission from 
ref. 6. Images were provided courtesy of J. Li. (b) Negative control (left) and positive sample (right) in 
an assay for inhibitors of cholesterol accumulation in LSOs. In these images stained with filipin, bright 
regions in each image are the LSOs, whereas dimmer regions show the whole cell area. Commercial 
software was used to score images. 14,956 compounds were screened30. Images are reproduced with 
permission from ref. 30. Images were provided courtesy of F. Maxfield. (c) Four example phenotypes in 
an assay for cytokinesis defects (particularly binucleation), scored by visual inspection and automated 
analysis. 51,000 compounds plus 20,000 double-stranded RNAs (RNA interference reagents to knock 
down each gene’s expression) were screened in Drosophila melanogaster32. Images are reproduced with 
permission from ref. 32. Images were provided courtesy of U. Eggert. (d) Negative (top) and positive 
(bottom) controls in assays for various readouts of cellular states, as indicated by the stain labels across 
the tops of the images. 100 compounds were tested across dose-response curves (13 doses) in these four 
separate assays. A magnified view of selected cells in mitosis and interphase is shown in the inset. Images 
were scored using custom-developed software40. Images are reproduced with permission from ref. 40. 
Images were provided courtesy of S. Altschuler.
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image analysis routine for each new phenotype of interest, we have used 
CellProfiler cell image analysis software as a general tool to identify cells 
and their subcellular compartments, and to measure hundreds of fea-
tures for each cell42 (http://www.cellprofiler.org). Biologists then spend 
a few hours using CellVisualizer data exploration software to select a few 
hundred example cells having the phenotype of interest (http://www.
cellvisualizer.org, in development and soon to be released open-source). 
Behind the scenes, machine learning algorithms determine rules based 
on the CellProfiler-measured features, thus enabling automatic, accurate 
scoring of complex phenotypes within a single day. A variety of unusual, 
subtle or rare (low-penetrance) phenotype screens have been successful 
in my group and with collaborators (Fig. 3). Although setting up and 
learning these software packages requires a few weeks of initial effort, 
and some knowledge of image analysis is very helpful for optimal results, 
the release of these experimental methods in the form of user-friendly 
software tools will enable screens for previously ‘impossible’ complex 
phenotypes and shorter assay development time for each new assay.

The main parameters in choosing image analysis software are data 
quality, speed (often inversely related to data quality), flexibility to assays 
of interest, cost and ease of use—particularly ease of integration of the 
software with the rest of the screening pipeline. I will address the first two 
here, having discussed flexibility above. Despite the public availability 
of standard image sets (http://ravkin.net/SBS/Invitation-Algorithm-
Comparison.htm) on which to test software for reporting the resulting 
Z′ factor (a measure of assay quality), very few vendors have done so. 
Currently, CellProfiler holds the record for the highest published score 
on one of these image sets42. Consumer demand for objective evidence 
of the quality of the software has not yet driven vendors to conduct these 
tests and make the results publicly available. Regarding speed, commercial 
software that is bundled with the image acquisition instrument tends 
to process images quickly enough to keep up with image acquisition; 
thus, analysis is performed ‘on the fly’. Software such as CellProfiler and 
some commercial third-party software packages instead perform image 
analysis at a separate stage, after image acquisition. This requires effort to 
integrate the screening workflow, and, in the case of CellProfiler, a com-
puting cluster is required to complete a full screen’s image analysis (~1–5 
min per image) in a matter of hours and thus avoid a bottleneck.

Data analysis and exploration
Once the phenotypes have been scored quantitatively, statistical analy-
sis is the next step. Though tools for this purpose are beginning to 
appear43,44, proper statistical techniques for scoring screens of any type 

are still widely debated. As has been the case in microarray data analysis, 
this should settle into user-friendly software and generally accepted 
methods over the next few years. Two major areas in which the field 
has not yet reached consensus are (i) how to correct biases in the data, 
which are generally due to plate-to-plate variation or position-within-
the-plate anomalies such as edge effects, and (ii) how to select hits from 
the screen, which is often decided based on the number of compounds 
the researcher is willing to pursue in follow-up work, rather than on a 
rigorous statistical basis. Most commonly, a bioinformaticist or stat-
istician is consulted to assist in the analysis of data using statistical 
software, such as the free software package R (http://www.r-project.
org). At the least, this analysis should examine the assay readouts for 
reproducibility between replicates, spatial and temporal biases in the 
data (both across and within plates), and assay quality (usually a Z′ fac-
tor of at least 0.2, and preferably greater than 0.5). Assays not meeting 
basic criteria should either be reoptimized and repeated, or, if border-
line, normalized and corrected statistically where possible.

Beyond statistical analysis, data exploration is another underde-
veloped area. Image-based assays inherently contain far more quan-
titative information about each cell than could possibly be visualized 
and explored by a researcher. Most of this information is ignored 
and instead the phenotype of interest is measured from one or a few 
numerical outputs from the screen. Furthermore, individual cell data 
within each well are usually merged by taking a mean or median of 
the cells’ values from the well, or by choosing the percentage of cells 
above a particular threshold. In most cases, commercial image analysis 
software does not produce the full spectrum of information available 
in the screen—which is understandable, given the goals of speed and 
simplicity.

Still, methods for storing and harvesting some of this normally dis-
carded useful information are rapidly developing, to the great advantage 
of screeners. For example, the fact that many phenotypes are measured 
for each cell in each image means that virtual secondary screens are 
possible for readouts other than the primary assay readout. This allows 
hits as determined by the primary readout of the screen to be further 
characterized for secondary readouts, using the original screening data. 
For example, if a DNA stain has been included in the screen, hits in the 
assay can quickly be categorized as to whether they affect cell prolifera-
tion (by looking at cell counts) and cell cycle progression (by looking 
for abnormal DNA content via cell cycle histograms)45. Several studies 
have done beautifully in-depth analyses of a small number of com-
pounds, where rather than arbitrarily defining the ‘primary’ and ‘sec-
ondary’ phenotypes, they have instead explored multiple phenotypes 
up front37,38,40. Less scientifically important but practically quite use-
ful is the ability to use data exploration tools to automatically remove 
false positives using measured features of the cells and/or images. This 
has traditionally been done by visual inspection27, but it is possible 
in our experience to distinguish and eliminate cytotoxic compounds, 
fluorescent compounds, and out-of-focus images based on measured 
features (unpublished data).

As mentioned above, although methods are gradually becoming avail-
able to properly make the most of this useful information46, no current 
tools meet all these needs for data exploration and analysis. As a result, 
most analyses have used custom tools8,37,38,40. Still, each commercial 
data analysis software package allows at least a few types of analysis to 
be performed. These software packages are either sold bundled with an 
image acquisition instrument (and usually limited to data produced by 
that company’s instruments), or they are sold separately: for example, 
SpotFire (http://www.spotfire.com), CellMine (http://www.bioima-
gene.com) and GeneData Screener (www.genedata.com). The main 
limitation in existing software packages is often the lack of ability to 

Figure 3  An example of an unusual, subtle phenotype recently screened in 
our group and scored automatically using CellProfiler for image analysis and 
CellVisualizer for machine learning–based automated scoring (raw screening 
images are shown). The cells in the sample on the left have a higher 
percentage of cells with a bright dot of actin staining (red, phalloidin) as 
compared with the control cells on the right. Scale bar, 20 µm.
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explore and analyze per-cell data and/or to link data points to images 
(AcuityXpress from Molecular Devices being an exception, http://www.
moleculardevices.com/pages/software/acuityxpress.html). We hope that 
the future release of the open-source CellVisualizer software package will 
address many of the current data exploration demands.

Next steps
Identifying chemicals that yield positive results in the primary screen-
ing assay is only the first step, of course. Confirmation screens and 
secondary follow-up assays are required to lend confidence that the 
compounds truly have the desired effects on cells. Furthermore, with 
cell-based screens, identifying the target proteins of interesting chemi-
cal compounds remains no simple task, though many technologies are 
being developed31,47. In fact, one promising new approach made fea-
sible by image-based screening is to simultaneously screen an RNA 
interference library to identify which genes, when perturbed, produce 
the phenotype sought from the chemical library32. Another use of RNA 
interference or other genetic screens is to search for genetic perturba-
tions that are able to suppress or enhance the chemical compound’s 
effects (modifier screens)48.

We are only beginning to see the dramatic advances made possible 
by the first generations of image-based screening technologies. Cutting-
edge developments in this field promise to provide even higher-content 
information, for example by allowing collection and analysis of time-
lapse images from live cells of each sample, thereby revealing the kinetics 
of biological processes, or three-dimensional images of each cell sample, 
for better structural resolution22. As has been the case since the launch of 
this field, new biological techniques and tools, advanced instrumentation 
and increasingly sophisticated and easy-to-use software tools continue to 
drive forward the cutting edge of image-based chemical screens.

ACKNOWLEDGMENTS
The author sincerely thanks M. Vokes for research and artwork, and N. Tolliday and 
L. Verplank for helpful comments.

COMPETING INTERESTS STATEMENT
The author declares no competing financial interests.

Published online at http://www.nature.com/naturechemicalbiology
Reprints and permissions information is available online at http://npg.nature.com/
reprintsandpermissions

1. Taylor, D.L. & Giuliano, K.A. Multiplexed high content screening assays create a sys-
tems cell biology approach to drug discovery. Drug Discov. Today Technol. 2, 149–154 
(2005).

2. Lahav, G. et al. Dynamics of the p53-Mdm2 feedback loop in individual cells. Nat. 
Genet. 36, 147–150 (2004).

3. Levsky, J.M. & Singer, R.H. Gene expression and the myth of the average cell. Trends 
Cell Biol. 13, 4–6 (2003).

4. Giuliano, K.A. et al. High-content screening: a new approach to easing key bottlenecks 
in the drug discovery process. J. Biomol. Screen. 2, 249–259 (1997).

5. Wilson, C.J. et al. Identification of a small molecule that induces mitotic arrest using a 
simplified high-content screening assay and data analysis method. J. Biomol. Screen. 
11, 21–28 (2006).

6. Li, Z. et al. Identification of gap junction blockers using automated fluorescence 
microscopy imaging. J. Biomol. Screen. 8, 489–499 (2003).

7. Granas, C. et al. Identification of RAS-mitogen-activated protein kinase signaling path-
way modulators in an ERF1 redistribution screen. J. Biomol. Screen. 11, 423–434 
(2006).

8. Gururaja, T.L. et al. R-253 disrupts microtubule networks in multiple tumor cell lines. 
Clin. Cancer Res. 12, 3831–3842 (2006).

9. Richards, G.R. et al. A morphology- and kinetics-based cascade for human neural cell 
high content screening. Assay Drug Dev. Technol. 4, 143–152 (2006).

10. Hoffman, A.F. & Garippa, R.J. A pharmaceutical company user’s perspective on the 
potential of high content screening in drug discovery. Methods Mol. Biol. 356, 19–31 
(2007).

11. Carpenter, A.E. & Sabatini, D.M. Systematic genome-wide screens of gene function. 
Nat. Rev. Genet. 5, 11–22 (2004).

12. Baum, B. & Craig, G. RNAi in a postmodern, postgenomic era. Oncogene 23, 8336–
8339 (2004).

13. Moffat, J. & Sabatini, D.M. Building mammalian signalling pathways with RNAi 

screens. Nat. Rev. Mol. Cell Biol. 7, 177–187 (2006).
14. Zon, L.I. & Peterson, R.T. In vivo drug discovery in the zebrafish. Nat. Rev. Drug Discov. 

4, 35–44 (2005).
15. O’Rourke, E.J., Conery, A.L. & Moy, T.I. Whole animal high-throughput screens: the 

C. elegans model. Methods Mol. Biol. (in the press).
16. Avila, E.L. et al. Tools to study plant organelle biogenesis. Point mutation lines with 

disrupted vacuoles and high-speed confocal screening of green fluorescent protein-
tagged organelles. Plant Physiol. 133, 1673–1676 (2003).

17. Bailey, S.N., Sabatini, D.M. & Stockwell, B.R. Microarrays of small molecules embed-
ded in biodegradable polymers for use in mammalian cell-based screens. Proc. Natl. 
Acad. Sci. USA 101, 16144–16149 (2004).

18. Inglese, J. et al. High-throughput screening assays for the identification of chemical 
probes. Nat. Chem. Biol. 3, 466–479 (2007).

19. Smith, C. & Eisenstein, M. Automated imaging: data as far as the eye can see. Nat. 
Methods 2, 547–555 (2005).

20. Gough, A.H. & Johnston, P.A. Requirements, features, and performance of high con-
tent screening platforms. Methods Mol. Biol. 356, 41–61 (2007).

21. Lee, S. & Howell, B.J. High-content screening: emerging hardware and software 
technologies. Methods Enzymol. 414, 468–483 (2006).

22. Pepperkok, R. & Ellenberg, J. High-throughput fluorescence microscopy for systems 
biology. Nat. Rev. Mol. Cell Biol. 7, 690–696 (2006).

23. Paran, Y. et al. High-throughput screening of cellular features using high-resolution 
light-microscopy; application for profiling drug effects on cell adhesion. J. Struct. 
Biol. 158, 233–243 (2007).

24. Liebel, U. et al. A microscope-based screening platform for large-scale functional 
protein analysis in intact cells. FEBS Lett. 554, 394–398 (2003).

25. Wheeler, D.B. et al. RNAi living-cell microarrays for loss-of-function screens in 
Drosophila melanogaster cells. Nat. Methods 1, 127–132 (2004).

26. Lundholt, B.K., Heydorn, A., Bjorn, S.P. & Praestegaard, M. A simple cell-based HTS 
assay system to screen for inhibitors of p53-Hdm2 protein-protein interactions. Assay 
Drug Dev. Technol. 4, 679–688 (2006).

27. Vogt, A. et al. Cell-active dual specificity phosphatase inhibitors identified by high-
content screening. Chem. Biol. 10, 733–742 (2003).

28. Baatz, M., Arini, N., Schape, A., Binnig, G. & Linssen, B. Object-oriented image 
analysis for high content screening: detailed quantification of cells and sub cellular 
structures with the Cellenger software. Cytometry A 69, 652–658 (2006).

29. Prigozhina, N.L. et al. Plasma membrane assays and three-compartment image cytome-
try for high content screening. Assay Drug Dev. Technol. 5, 29–48 (2007).

30. Pipalia, N.H., Huang, A.Y., Ralph, H., Rujoi, M. & Maxfield, F.R. Automated micros-
copy screening for compounds that partially revert cholesterol accumulation in 
Niemann-pick C cells. J. Lipid Res. 47, 284–301 (2006).

31. Eggert, U.S. & Mitchison, T.J. Small molecule screening by imaging. Curr. Opin. Chem. 
Biol. 10, 232–237 (2006).

32. Eggert, U.S. et al. Parallel chemical genetic and genome-wide RNAi screens identify 
cytokinesis inhibitors and targets. PLoS Biol. 2, e379 (2004).

33. Yarrow, J.C., Totsukawa, G., Charras, G.T. & Mitchison, T.J. Screening for cell migration 
inhibitors via automated microscopy reveals a Rho-kinase inhibitor. Chem. Biol. 12, 
385–395 (2005).

34. Kau, T.R. et al. A chemical genetic screen identifies inhibitors of regulated nuclear 
export of a Forkhead transcription factor in PTEN-deficient tumor cells. Cancer Cell 
4, 463–476 (2003).

35. Pelish, H.E. et al. Secramine inhibits Cdc42-dependent functions in cells and Cdc42 
activation in vitro. Nat. Chem. Biol. 2, 39–46 (2006).

36. Corcoran, L.J., Mitchison, T.J. & Liu, Q. A novel action of histone deacetylase inhibitors 
in a protein aggresome disease model. Curr. Biol. 14, 488–492 (2004).

37. Perlman, Z.E. et al. Multidimensional drug profiling by automated microscopy. Science 
306, 1194–1198 (2004).

38. Tanaka, M. et al. An unbiased cell morphology-based screen for new, biologically active 
small molecules. PLoS Biol. 3, e128 (2005).

39. Perlman, Z.E., Mitchison, T.J. & Mayer, T.U. High-content screening and profiling 
of drug activity in an automated centrosome-duplication assay. ChemBioChem 6, 
145–151 (2005).

40. Loo, L.H., Wu, L.F. & Altschuler, S.J. Image-based multivariate profiling of drug 
responses from single cells. Nat. Methods 4, 445–453 (2007).

41. Abramoff, M.D., Magalhaes, P.J. & Ram, S.J. Image processing with ImageJ. 
Biophotonics Int. 11, 36–42 (2004).

42. Carpenter, A.E. et al. CellProfiler: image analysis software for identifying and quantify-
ing cell phenotypes. Genome Biol. 7, R100 (2006).

43. Makarenkov, V. et al. HTS-Corrector: software for the statistical analysis and correc-
tion of experimental high-throughput screening data. Bioinformatics 22, 1408–1409 
(2006).

44. Boutros, M., Bras, L.P. & Huber, W. Analysis of cell-based RNAi screens. Genome 
Biol. 7, R66 (2006).

45. Moffat, J. et al. A lentiviral RNAi library for human and mouse genes applied to an 
arrayed viral high-content screen. Cell 124, 1283–1298 (2006).

46. Carpenter, A.E. Data analysis: extracting rich information from images. Methods Mol. 
Biol. (in the press).

47. Perrimon, N., Friedman, A., Mathey-Prevot, B. & Eggert, U.S. Drug-target identifica-
tion in Drosophila cells: combining high-throughout RNAi and small-molecule screens. 
Drug Discov. Today 12, 28–33 (2007).

48. MacKeigan, J.P., Murphy, L.O. & Blenis, J. Sensitized RNAi screen of human kinases 
and phosphatases identifies new regulators of apoptosis and chemoresistance. 
Nat. Cell Biol. 7, 591–600 (2005).

NATURE CHEMICAL BIOLOGY  VOLUME 3   NUMBER 8   AUGUST 2007 465

P E R S P E C T I V E

http://www.moleculardevices.com/pages/software/acuityxpress.html
http://www.moleculardevices.com/pages/software/acuityxpress.html
http://www.nature.com/naturechemicalbiology
http://npg.nature.com/reprintsandpermissions
http://npg.nature.com/reprintsandpermissions

	Image-based chemical screening
	Biological assay development
	Image acquisition and storage
	Image analysis
	Data analysis and exploration
	Next steps
	Figure 1  The key steps necessary for conducting a high-throughput image-based chemical compound scr
	Figure 2  A sampling of image-based phenotypes scored in recent screens
	Figure 3  An example of an unusual, subtle phenotype recently screened in our group and scored autom
	ACKNOWLEDGMENTS
	COMPETING INTERESTS STATEMENT


