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internalization, Selwood and colleagues 
confirmed that SMoC entry routes are 
diverse, and that the addition of geminin 
cargo influenced the mode of delivery into 
the cell.

Whatever the mechanism, the goal of 
designing a nonpeptidic protein-transduc-
tion agent allowing the internalization of 
a biologically active agent was successfully 
attained in this work. This is a very impor-
tant finding for pharmacology. It might also 
trigger additional research by attracting the 
attention of chemists, promoting the dis-
covery of new mimics and the development 
of efficient strategies to reach intracellular 
targets.

There is, however, a large amount of 
work ahead. It remains to be seen whether 
SMoCs are active in vivo, or whether they 
are toxic or mutagenic. Additionally, it will 
be interesting to study their distribution 
in vivo, in particular whether they can 
reach the nervous system, and to study 
different modes of administration, par-
ticularly oral administration as favored 

by the pharmaceutical industry. It will 
also be important to be able to send these 
new agents to the appropriate cells in vivo 
and, once in the cells, into the appropriate 
compartments⎯not an easy task. It can be 
anticipated, however, that in addition to 
gene therapies based primarily on the use 
of viral vectors, transduction peptides and 
their small-molecule mimics will complete 
our pharmacological toolbox.
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Software opens the door to 
quantitative imaging
Anne E Carpenter

Cellular imaging by fluorescence microscopy is becoming 
simultaneously higher-throughput and more quantitative as researchers 
develop integrated systems for image acquisition and analysis.

For hundreds of years, biologists have exam-
ined cell and tissue samples by microscopy, 
gradually progressing from sketching their 
observations (often beautiful, but subjec-
tive) to capturing images by film photo-
graphy. The work of Brent and colleagues1 
described in this issue of Nature Methods is 
an example of another gradual but monu-
mental change in biology: the shift toward 
automated digital image acquisition by 
robotic microscopy, coupled with automat-
ed image analysis. The successful integration 
of these steps allows quantitative analysis 
and mathematical modeling of processes 
that previously were relegated to qualita-
tive and subjective observation. These new 

methods are helping to provide a firm foun-
dation for systems biology.

Typically, if  a difference in cellular 
appearance is not immediately obvious to 
the human eye by microscopy, it is assumed 
there is no visual difference. Particularly 
industrious researchers with a critically 
important research question might never-
theless invest effort to check for differences 
more objectively by making quantitative 
measurements manually (for example. 
cell counting or cell-size measurement) 
if the number of samples is manageable. 
Alternatively, certain cell features can be 
measured on a single-cell basis by flow 
cytometry, but the same individual cells 

cannot be analyzed over time, and certain 
cellular features cannot be measured by flow 
cytometry (for example, morphology, local-
ization), especially in non-suspension cells. 
An increasingly appealing alternative, there-
fore, is to collect per-cell measurements by 
automated image cytometry as described in 
the article by Gordon et al.1 (Fig. 1).

It is clear that for many studies single-cell 
quantitative analysis is critical for making 
meaningful biological conclusions because 
even clonal populations of cells can vary 
substantially. Progress has been made 
recently in cataloging and understanding 
the sources of variation, which include dif-
ferences in cell-cycle position, stochastic 
variations in gene expression, the preexist-
ing amounts of proteins and metabolites in 
each cell, and microenvironment differences 
(for example, cell-cell contacts or local dif-
ferences in substrate or medium).

For example, in a study using some of the 
methods presented by Gordon et al. and 
analyzing thousands of yeast cells over time, 
Brent and colleagues found that expression 
noise is a minimal source of the existing 
cell-to-cell variation, whereas the pathway 
capacity (the capacity of individual cells to 
transmit signals through the pathway) and 
expression capacity (the capacity to express 
proteins from genes) are the main sources of 
variation1,2. Other laboratories are pursuing 
this question as well and are carefully quan-
tifying sources of noise in cellular systems3,4. 
The recent demonstration that individual 
molecules can be counted, under appropri-
ate experimental conditions5,6, indicates 
that precise quantitative systems biology 
models are on the horizon.

The ease with which quantitative biologi-
cal data can be obtained using such methods 
is highlighted by the application of a suite 
of methods, which Gordon et al. describe, 
to the analysis of molecular maturation and 
degradation rates in unperturbed yeast cells.  
Their measurement of the maturation rates 
of fluorescent proteins on a per-cell basis 
was remarkably consistent regardless of the 
protein expression level or the physiological 
state of the cell, supporting the hypothesis 
that maturation requires intramolecular 
interactions only. This, together with other 
measurements and assumptions of the 
properties of the fluorescent proteins and 
cells, allowed Gordon et al. to take a single 
snapshot of a field of view of cells express-
ing different molecular variants to compare 
mRNA or protein degradation rates between 
two species. They confirmed the validity of 
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the new methodology using conventional 
experiments.

Image cytometry is clearly poised to be a 
new staple of the modern biological labora-
tory. Although commercial integrated sys-
tems for automated cell-image acquisition 
and analysis have existed for the past decade, 
they often are not flexible enough for most 
basic research, including work in the afore-
mentioned laboratories. As a result, most 
researchers piece together various compo-
nents as needed. A tremendous amount of 
work must often be expended, therefore, to 
get a complete, quantitative analysis sys-
tem functioning. Many laboratories have 
yielded dramatic biological insights in 
high-throughput experiments by investing 
in such efforts7–9.

Fortunately, this work is becoming easier 
as many pieces of this puzzle are now avail-
able as a result of open-source, academic 

efforts. They range from prototype to well-
developed, but over time their continued 
individual development and integration, if 
supported by funding agencies, should yield 
a fully automated, fully open-source system. 
This includes software packages for the con-
trol of microscope hardware (for example, 
µManager, http://www.micro-manager.org/), 
the storage and manipulation of images (for 
example, Open Microscopy Environment, 
http://openmicroscopy.org/), the quantita-
tive analysis of images (for example, ImageJ, 
http://rsb.info.nih.gov/ij, and CellProfiler, 
http://www.cellprofiler.org), and the explo-
ration of per-cell measurements (for exam-
ple, Physics Analysis Workstation, http://
paw.web.cern.ch/paw, and CellVisualizer, 
http://www.cellvisualizer.org).

In practical terms, this growing avail-
ability of free software advances the pace 
of science because researchers can test the 

software immediately rather than first 
investing time estimating its utility based 
on product literature, justifying its cost 
to supervisors and navigating purchasing 
departments. Furthermore, and often over-
looked, free software levels the playing field 
for researchers with less funding, includ-
ing younger researchers and researchers in 
resource-poor nations or institutions.

Yet the free availability of the source code 
goes beyond economic considerations. 
Access to the underlying methods is not 
only key for understanding and interpret-
ing the data⎯it often provides a basis for 
improvement and advancement by other 
researchers, preventing redundant custom 
programming and moving research forward 
that much more quickly.

Admittedly, the software presented by 
Gordon et al. is not a breakthrough in terms 
of its algorithms, nor in immediate broad 
applicability to a wide range of cell types 
or research questions. The real advance is 
in the validation of an integrated system 
capable of revealing valuable biological 
knowledge. This work is an illustration of 
what we hope will become a host of research 
projects using high-throughput cell-image 
acquisition and analysis methods that are 
free and open-source.
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Figure 1 | Microscope-based cytometry. (a) Cells are seeded in 96-well plates. (b) The wells are 
imaged using an automated microscope and autofocus software. (c) Automated imaging generates 
a series of images for a single field of view in each well over time. (d) The images are processed by 
image-analysis software, Cell-ID, which identifies and tracks individual cells, and measures total cell 
fluorescence. (e) The fluorescence imaging data are used for quantitative analysis of per-cell protein 
levels over time, in this case for Saccharomyces cerevisiae cells.
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