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ABSTRACT 

Background: Large-scale image sets acquired by automated microscopy of perturbed samples enable a 

detailed comparison of cell states induced by each perturbation, such as a small molecule from a diverse 

library. Highly multiplexed measurements of cellular morphology can be extracted from each image and 

subsequently mined for a number of applications. 

Findings: This microscopy data set includes 919,874 five-channel fields of view representing 30,616 tested 

compounds, available at ‘The Cell Image Library’ repository. It also includes data files containing morphological 

features derived from each cell in each image, both at the single-cell level and population-averaged (i.e., per-

well) level; the image analysis workflows that generated the morphological features are also provided. Quality-

control metrics are provided as metadata, indicating fields of view that are out-of-focus or containing highly 

fluorescent material or debris. Lastly, chemical annotations are supplied for the compound treatments applied. 

Conclusions: Because computational algorithms and methods for handling single-cell morphological 

measurements are not yet routine, the dataset serves as a useful resource for the wider scientific community 

applying morphological (image-based) profiling. The data set can be mined for many purposes, including 

small-molecule library enrichment and chemical mechanism-of-action studies, such as target identification. 

Integration with genetically-perturbed datasets could enable identification of small-molecule mimetics of 

particular disease- or gene-related phenotypes that could be useful as probes or potential starting points for 

development of future therapeutics. 
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DATA DESCRIPTION 

Background 

High-throughput quantitative analysis of cellular image data has led to critical insights across many fields in 

biology[1,2]. While microscopy has enriched our understanding of biology for centuries, only recently has 

robotic sample preparation and microscopy equipment become widely available, together with large libraries of 

chemical and genetic perturbations. Concurrently, the advent of high-throughput imaging has also become an 

engine for pharmacological screening and basic research, by allowing multiparametric image-based 

interrogation of physiological processes at a large scale[3,4].  

 

A typical imaging assay uses several fluorescent probes (or fluorescently-tagged proteins) simultaneously to 

stain cells, each labeling distinct cellular components in each sample. In this way, the morphological 

characteristics (or “phenotype”) of cells, tissues, or even whole organisms can be examined, along with the 

concomitant changes induced by the perturbants of choice[5–7].  
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Phenotypic profiling has emerged as a powerful tool to discern subtle differences among treated samples in a 

relatively unbiased manner. In contrast to a screening strategy, where a usually limited number of features are 

quantified to select for a known cellular phenotype, profiling relies on collecting a large suite of per-cell 

morphological features and then using statistical analysis to uncover subtle morphological patterns 

(“signatures”) by which the perturbations can be characterized. The “Cell Painting” assay used for the dataset 

presented here uses fluorescent markers to broadly stain a number of cellular structures in high-throughput 

format, while automated software extracts the single-cell image-based morphological features. Further analysis 

then aggregates the data into multivariate profiles of these features to compare signatures among sample 

treatments.  

 

The applications of image-based profiling are many and diverse. A dataset comprising small-molecule 

perturbations, as presented here, can be used for small-molecule library enrichment (to create smaller libraries 

while retaining high diversity of phenotypic impact) and small-molecule mechanism-of-action studies, including 

target identification. Integration of this dataset with datasets resulting from other types of perturbations (e.g., 

patient cell samples or genetically-perturbed samples) enables identification of small-molecule mimetics of 

particular disease- or gene-related phenotypes that could be useful as probes or potential starting points for 

development of future potential therapeutics. 

 

Data acquisition protocol and quality control 

To maximize the morphological information extracted from a single assay, we sought to “paint the cell” with as 

many distinct fluorescent morphological markers as possible simultaneously. Balancing technical and cost 

considerations, we developed the Cell Painting assay protocol in which cells are stained for eight major 

organelles and sub-compartments, using a mixture of six well-characterized fluorescent dyes suited for use in 

high-throughput (Fig. 1)[8,9].  

 

The protocols for staining and imaging have been described in detail elsewhere[8,9]. Briefly, U2OS cells were 

plated in 384-well plates, then treated with each of 30,616 compounds in quadruplicate. Of these compounds, 

10,162 compounds came from the Molecular Libraries Small Molecule Repository (MLSMR)[10], 2,222 were 

drugs, natural products, and small‐ molecule probes that are part of the Broad Institute known bioactive 

compound collection, 274 were confirmed screening hits from the Molecular Libraries Program (MLP), and 

19,137 were novel compounds derived from diversity-oriented synthesis. Live cell staining was first performed 

to stain the mitochondria. After incubation, the cells were fixed with formaldehyde, permeabilized with Triton X-

100, and stained with the remaining dyes to identify the nucleus (Hoechst), nucleoli and cytoplasmic RNA 

(SYTO 14), endoplasmic reticulum (concanavalin A), Golgi and plasma membrane (wheat germ agglutinin), 

and the actin cytoskeleton (phalloidin). Each of the 413 multi-well plates was imaged using an ImageXpress 

Micro XLS automated microscope (Molecular Devices, Sunnyvale, CA, USA), with five fluorescent channels at 

20× magnification, and 6 fields of view (sites) imaged per well (Table 1). Each image channel was then stored 

as a separate, grayscale image file in 16-bit TIF format. All raw image data is publicly available at ‘The Cell 

Image Library’ repository[11]. 

 

The dataset available at GigaDB consists of the processed data derived from the acquired raw image data; the 

quantitative analysis of the images used a three-step pipeline workflow created with the modular open-source 

software CellProfiler[12] (Table 2; see also the Additional File and the “Availability of supporting data” section). 

First, an illumination pipeline estimated the heterogeneities in the spatial fluorescence distribution introduced 



4 

by the microscope optics. This approximation was calculated on a per-plate basis for each channel and yielded 

a collection of illumination correction functions (ICFs) for later use in intensity correction; we have found that 

this approach not only aids in cell identification but also improves accuracy in signature classification[13]. 

Second, a quality control pipeline identified and labeled images with aberrations such as saturation artifacts 

and focal blur as described previously[14,15] (see also Additional File). Finally, a feature-extraction pipeline 

applied the ICFs to correct each channel, identified the nuclei, cell body and cytoplasm, and extracted the 

morphological features for each cell, depositing the results into a database for downstream analysis (see 

Additional File for a description of the extracted features). The extracted features include a broad array of 

cellular shape and adjacency statistics, as well as intensity and texture statistics that are measured in each 

channel. The pipelines, ICFs, and extracted morphological data are provided as a static snapshot in 

GigaDB[16] ands in a Gigascience GitHub repository[17]. We note that the pipelines are configured for the 

archived CIL images; updates to the pipelines (and to the Cell Painting protocol in general) are provided 

online[18]. 

 

Many approaches exist to creating per-sample profiles based on the per-cell data from each replicate; we have 

found that producing profiles simply by averaging the cellular features across all cells for each well yielded 

good results in characterizing compounds[19]. These profiles are provided in GigaDB along with a listing of 

chemical annotations for the compounds applied. The downstream analysis of morphological profiling data is a 

field very much in flux at present; our own laboratory is developing an R package for this purpose on our lab’s 

GitHub page[20]. 

Potential uses 

Phenotypic profiling provides a powerful means for assessing the biological impact of molecular or genetic 

perturbations, and for grouping sample treatments based on similarity. The applications are diverse and 

powerful; we only briefly summarize here. The images and annotations provided in this Data Note have already 

been used in two published analyses from our own group; unsupervised clustering of a subset of 1,601 

bioactive compounds in a proof-of-principle study of compound mechanism of action 

(https://www.broadinstitute.org/bbbc/BBBC022/)[21] and small-molecule library enrichment based on the full 

set of 30,616 small molecules, a study in which morphological profiles successfully selected compound 

subsets with higher performance diversity than randomly-selected compounds[8]. Other profiling applications 

include compound target identification, assessment of toxicity, and lead hopping. Further detail on applications 

of profiling, including those relevant to genetic perturbation data sets as opposed to the small molecule data 

set described here, is available in a recent review [22].  

 

This small-molecule data set could also be used in more conventional applications; for example, if any of the 

morphological phenotypes in the experiment are of particular interest (e.g., mitochondrial structure or nucleolar 

size), the images and profiles can be re-mined, as in a conventional high-content screen, to produce “hit lists” 

of compounds that perturb those morphologies. The images and data can also be used as a look-up-table to 

identify morphological phenotypes produced by compounds that are deemed of interest in any particular high-

throughput screen. 

 

AVAILABILITY AND REQUIREMENTS  

● Project name: Supporting pipelines, scripts and metadata for cell painting data 
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● Project home page: https://github.com/gigascience/paper-bray2017  

● Operating systems: Linux (for scripts), platform-independent (for pipelines) 

● Programming language: Bash (for scripts) 

● Other requirements: Unix (for scripts), CellProfiler 2.1.1 or later (for pipelines) 

● License: GNU GPL v3 

AVAILABILITY OF SUPPORTING DATA 

The raw image data described in this article is available at ‘The Cell Image Library’ repository as Plates 24277-

26796 (http://www.cellimagelibrary.org/pages/project_20269, CIL: 24277- CIL: 26796)[11]. The remainder of 

the dataset supporting the results of this article is available in the GigaScience GigaDB (as a static snapshot) 

and GitHub repositories [16,17]. On GigaDB, all data relating to a plate are contained in sub-folders under a 

parent folder named with a unique 5-digit identifier for each plate. This includes illumination correction 

functions, metadata related to sample treatment and image quality control, extracted morphological features, 

and profiles (Table 2). Each of the plate folders has been packed as tape archives (TAR, .tar) before being 

compressed using GNU Gzip (.gz), and can be downloaded individually. Regrettably, not all the raw images 

could be retrieved from our archives so not all plates have the full complement of 11,520 images; we have 

provided curation details listing the completeness of the archived data for each plate (Table 2). The GitHub 

repository also contains a bash shell script to facilitate downloading the entire CIL image set in batch, as well 

as image analysis pipelines and associated chemical annotation metadata. Updates to the pipelines (e.g., to 

accommodate updated software versions or updated versions of the protocol) can be found at our Cell Painting 

wiki[18]. An R package for the creation of well averages from single cell data can be found online[23].  
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Figure 1: Sample images of U2OS cells from the small-molecule Cell Painting experiment. Images are shown 

from a DMSO well (negative control, top row) and a parbendazole well (bottom row). The columns display the 

five channels imaged in the Cell Painting assay protocol; see Table 1 for details about the stains and channels 

imaged. 
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Table 1: Details of dyes, stained cellular sub-compartments and channels imaged in the Cell Painting assay. 

  

Dye 

  

Organelle or cellular  

component 

  

Channel name 

CellProfiler ImageXpress 

Hoechst 33342 Nucleus DNA w1 

Concanavalin A/Alexa Fluor 488 
conjugate 

Endoplasmic reticulum ER w2 

SYTO 14 green fluorescent nucleic acid 
stain 

Nucleoli, cytoplasmic RNA RNA w3 

Phalloidin/Alexa Fluor 568 conjugate, 
wheat germ agglutinin (WGA)/Alexa 

Fluor 555 conjugate 

F-actin cytoskeleton, Golgi, 
plasma membrane 

AGP w4 

MitoTracker Deep Red Mitochondria Mito w5 

 

The CellProfiler channel name refers to the name given by the software to each channel; this nomenclature 

also applies to the naming of the extracted morphological features. The ImageXpress channel name refers to 

the text in the raw image file name identifying the acquired wavelength.  
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Table 2: Summary of the raw and intermediately processed data included in this Data Descriptor, and 

nomenclature in the Gigascience GigaDB and GitHub repositories. <plate_ID> refers to the 5-digit plate ID 

assigned by the ImageXpress microscope system. 

Data item Location Description 

Raw fluorescence 
images 

The Cell Image Library[11], 
GitHub: 
download_cil_images.sh 

Five fluorescence channels, acquired at 6 fields 
of view per well at 20× magnification (0.656 

μm/pixel). The experiment comprises 413 plates 
in 384-well format (Plates 24277-26796). We 
include a bash shell script to facilitate 
downloading the archives. 

CellProfiler 
pipelines 

GitHub: pipelines/ folder, 
GigaDB: pipelines.zip 

CellProfiler software was used to correct for 
uneven illumination, perform quality control and 
delineate cells into nuclei, cell body and 
cytoplasmic sub-compartments and measure 
morphological features for each sub-
compartment. 

Illumination 
correction 
functions (ICFs) 

GigaDB: 
<plate_ID>/illumination_correc
tion_functions 

An ICF is an estimation of the spatial illumination 
distribution introduced by the microscopy optics. 
There is one ICF per channel, for each plate. 

Quality control 
metadata 

GigaDB: 
<plate_ID>/quality_control 

Each field of view is assessed for the presence 
of two artifacts (focal blur and saturated objects), 
and assigned a label of 1 if present, and 0 if not. 

Extracted 
morphological 
features 

GigaDB: 
<plate_ID>/extracted_features 

Three data tables consisting of (a) per-image 
cellular statistics (e.g. cell count), (b) per-cell 
size, shape, intensity, textural and adjacency 
statistics measured for the nuclei, cytoplasm, and 
cell body, and (c) experimental metadata (e.g., 
compound applied). 
Includes a MySQL dump file for importing the 
data tables into a MySQL database. 

Morphological 
profiles 

GigaDB: <plate_ID>/profiles 
Per-well averages of each extracted 
morphological feature computed across the cells.  

Image curation 
statistics 

GigaDB, GitHub: 
image_curation_statistics.csv 

A summary of image statistics, such as the 
number of images, wells, and sites in the plates 
archived at The Cell Image Library, the number 
of sites with quality measures and the number of 
wells with morphological profiles. 

Chemical 
annotations 

GigaDB, GitHub: 
chemical_annotations.csv 

Chemical annotations including the compound 
names, SMILES, and PubChem identifiers 
(CID/SID) 

 


