A

Insights into type 2 diabetes from rare coding variants

Jason Flannick

flannick@broadinstitute.org
flannicklab.org

Rare coding variants

Back in 2008...

The case of the missing heritability

When scientists opened up the human genome, they expected to find the genetic components of common traits and diseases. But they were nowhere to be seen. Brendan Maher shines a light on six places where the missing loot could be stashed away.

Table 1 | Estimates of heritability and number of loci for several complex traits

Disease	Number of loci	Fropi	Heritability measure
Age-related macular degeneration ${ }^{72}$	5	50\%	Sibling recurrence risk
Crohn's disease ${ }^{21}$	32	20\%	Genetic risk (liability)
Systemic lupus erythematosus ${ }^{73}$	6	15\%	Sibling recurrence risk
Type 2 diabetes ${ }^{74}$	18	6\%	Sibling recurrence risk
HDL cholesterol ${ }^{75}$	7	5.2\%	Residual* phenotypic variance
Height ${ }^{15}$	40	5\%	Phenotypic variance
Early onset myocardial infarction ${ }^{76}$	9	2.8\%	Phenotypic variance
Fasting glucose ${ }^{77}$	4	1.5\%	Phenotypic variance

[^0]
Classes of genetic variation

The case of the missing heritability When scientists opened up the human genome, they expected to find the genetic components of common traits and diseases. But they were nowhere to be seen. Brendan Maher shines a light on
six places where the missing loot could be stashed away. six places where the missing loot could be stashed away.

Are Rare Variants Responsible for Susceptibility to Complex Diseases?
Jonathan K. Pritchard
Department of Statistics, University of Oxford, Oxford
Common Genetic Variation and Human Traits David B. Goldstein, Ph.D.

Genetic Heterogeneity in Human Disease

```
Jon McClellan,1,* and Mary-Claire King.,*
Department of Psychiatry
Departments of Medicine and Genome Sciences
University of Washington, Seattle, WA 98195-7720, USA
Correspondence: driack@uw.edu (J.M.), mcking@uw.edu (M.-C.K.)
Eorrespondence: driack@uw.edu (J.M.), mckingஞuw.edu (M.-C.K.)
DO1 10.1016/,.cell.2010.03.032
```


Clan Genomics and the Complex Architecture of Human Disease

James R. Lupski, ${ }^{1,2,3, *}$ John W. Belmont, ${ }^{1,2}$ Eric Boerwinkle, ${ }^{4,5}$ and Richard A. Gibbs ${ }^{15,5 *}$

open a access freely avalable online \quad PLOS BioLogr

Rare Variants Create Synthetic Genome-Wide Associations
Samuel P. Dickson ${ }^{1,2}$, Kai Wang 3, lan Krantz ${ }^{3,4,5}$, Hakon Hakonarson ${ }^{3,4,5}$, David B. Goldstein ${ }^{1 *}$

(O) APPLICATIONS OF NEXT-GENERATION SEQUENCING

Uncovering the roles of rare

 variants in common disease through whole-genome sequencing
GWAS: individual common variant associations

cases ($\mathrm{n}=1,000$) people with heart disease

controls ($n=1,000$)
people without heart disease

Rare variants: aggregate gene-level associations

Early successes from targeted sequencing

Early successes from targeted sequencing

12 loss-of-function SLC30A8 mutations in 149,134 individuals Aggregate odds ratio: 0.34

$$
p=1.7 \times 10^{-6}
$$

a Variants

b Frequencies

Biological insights

VS.

Genetic architecture

Are rare variants responsible for a significant fraction of disease heritability?

Coding variation

Noncoding variation

Follow-up

Main finding:

Are Rare Variants Responsible for Susceptibility to Complex Diseases?

Common Genetic Variation and Human Traits

Genetic Heterogeneity in Human Disease
Clan Genomics and the Complex
Architecture of Human Disease

The case of the missing heritability

 When scientists opened up the human genome, they expected to find the genetic components of common traits and diseases. But they were nowhere to be seen. Brendan Maher shines a light on six places where the missing loot could be stashed away

Rare Variants Create Synthetic Genome-Wide
Associations

Common and rare variants in multifactorial Uncovering the roles of rare susceptibility to common diseases variants in common disease through whole-genome sequencing

Since

MIMR3

225
\square African American
\square East Asian
\square European
\square Hispanic or Native American
\square South Asian
Initial sample size

C2CD4B-C2CD4A
ZFAND6
ZBED3
ZBED
ZBE
Linkage or candidate ge
GWAS or Metabochip GWAS or Met
Exome array Genome or exome sequencing Sample size (1,000s)

Problem: what are the genes?

- Usually only one (or a few) variants are causal

b

Meanwhile, rare variants...

- When significant: direct links from disease to genes
- When variants inactivate protein: directional link with disease risk

More recent (45,000 sample) exome sequencing

- Three exome-wide significant gene-level associations

Gene-level associations

Explaining minimal heritability

LVE of top cGWAS and exomes associations

But: many signals beyond

But: many signals beyond

Further support for this model

Beyond type 2 diabetes

- Study design:
- Exome sequencing of 85,474 non-diabetic individuals
- UKBB exomes ($\mathrm{n}=40,151 ; 100 \%$ European)
- AMP-T2D exomes ($n=45,323$; 15.8\% African American; 25.6\% East Asian; 18.7\% European; 18.0\% Hispanic; and 22.2\% South Asian)
- 24 quantitative traits
- Single variant analysis (mostly for common variants)
- Gene-level analysis (for rare variants)

HbA1C is commonly used in T2D diagnosis

HbA1C Gene-Level Associations

Common variants and HbA1C

~150,000
individuals
60 common variant associations

Common variants and HbA1c

- Associations can be grouped into two classes

Associated with red blood cell traits

Associated with other glycemic traits

Table 1. (Continued)

SNP	Markername	Chr.	Position (bp)	Effect Allele	Other Allele	Gene	Status	Signals	Classification	European ancestry METAL p-value	Trans-ethnic MANTRA $\log 10 B F$
45	rs10774625	12	110394602	G	A	ATXN2	Novel	Single	Erythrocytic	1.45×10^{-8}	6.38
46	rs11619319	13	27385599	G	A	PDX1	Novel	Single	Glycemic	4.58×10^{-7}	8.38
47	rs576674	13	32452302	G	A	KL	Novel	Single	Glycemic	1.39×10^{-5}	6.38
48	rs282587	13	112399663	G	A	ATP11A	Known	Single	Unclassified	1.70×10^{-12}	13.92
49	rs9604573	13	113571085	T	C	GAS6	Novel	Single	Unclassified	9.50×10^{-9}	6.72
50	rs11248914	16	233563	T	C	ITFG3	Novel	Single	Erythrocytic	2.56×10^{-14}	10.60
51	rs1558902	16	52361075	A	T	FTO	Novel	Single	Unclassified	327×10^{-8}	6.88
52	rs4783565	16	67307691	A	G	CDH3	Novel	Single	Erythrocytic	1. 73×10^{-7}	6.73
53	rs837763	16	87381230	T	C	CDT1	Known	Single	Erythrocytic	1.68×10^{-28}	28.89
54	rs9914988	17	24207230	A	G	ERAL1	Novel	Single	Erythrocytic	2.77×10^{-11}	11.34
55	rs2073285	17	73628956	C	T	TMC6	Novel	Single	Unclassified	1.27×10^{-4}	6.47
56	rs1046896	17	78278822	T	C	FN3KRP	Known	Single	Unclassified	4.46×10^{-64}	71.79
57	rs11086054	19	17107737	A	T	MYO9B	Novel	Multiple	Unclassified	8.16×10^{-6}	9.12
58	rs17533903	19	17117523	A	G	MYO9B	Known	Multiple	Erythrocytic	5.27×10^{-12}	9.912
59	rs4820268	22	35799537	G	A	TMPRSS6	Known	Single	Erythrocytic	1.40×10^{-22}	20.79
60	rs1050828	X	153417411	T	C	G6PD	Novel	Single	Erythrocytic	NA*	NA

Different biological effects

- Glycemic associations, but not erythrocytic associations, predict future development of T2D
- ~2\% of African-Americans could be misclassified due to G6PD variant

HbA1C Gene-Level Associations

How do these variants affect HbA1c diagnosis?

G6PD (rs1050828) Common

How do these variants affect HbA1c diagnosis?

Variation	Model
Rare	PIEZO1/G6PD
Common	Erythrocytic Variants

Expanding the model

- Significant associations in many sets of genes with known function on erythrocytic lifespan in mice

Evidence for associations across many genes

- Compared to rare variants in genes involved in glycemia in mice, rare variants in erythrocytic genes are more likely to decrease HbA 1 c

Putting this together in a polygenic score

Filtering to true associations

Filtering to erythrocytic variants
a

Final model: 21,293 variants

**Diamonds scaled to number of reclassified individuals in the test sample

Model is highly polygenic

An Expanded View of Complex Traits: From Polygenic to Omnigenic

Evan A. Boyle, ${ }^{1, *}$ Yang I. Li, ${ }^{1, *}$ and Jonathan K. Pritchard ${ }^{11,2,3,{ }^{*}}$

あ
 Common

Many T2D patients carry pathogenic variants in MODY genes

Many damaging mutations in MODY genes are incompletely penetrant

Rare and common forms of diabetes share genes

$$
\dot{\pi} \dot{\pi} \underset{\pi}{\pi}
$$

The ProDiGY study of T2D in youth

- Incidence of $\sim 3,700$ cases/year and increasing, particularly ages 10-19
- 15% of new diabetes cases in whites, $46-86 \%$ in minorities

Samples

- SEARCH for Diabetes in Youth
- Longitudinal follow up to assess natural history and complication risk factors
- Active registry of youth diagnosed with diabetes at age < 20
- TODAY
- Clinical trial of ages 10-17 to compare treatment efficacy of Metformin vs Metformin+Lifestyle Intervention vs Metformin+Rosiglitazone
- BMI above 85th percentile
- Both studies are multi-ethnic

Ancestry	Samples
African-American	$1,491(40.8 \%)$
East-Asian	$62(1.7 \%)$
European	$757(20.7 \%)$
Hispanic	$1,306(35.9 \%)$
NA	$34(0.9 \%)$
Total	3,650

	Total	Male	Female
\mathbf{N}	3,650	$1,294(35.4 \%)$	$2,356(64.6 \%)$
Current Age	15.2 ± 3.0	15.1 ± 3.1	15.4 ± 2.8
Age at Onset	13.6 ± 2.3	13.3 ± 2.3	14.1 ± 2.2

Analysis design

- Whole exome sequencing of 3,650 youth-onset T2D cases
- Match to controls from AMP-T2D exomes
- Total analysis of 3,005 cases and 9,777 controls
- Single variant analysis (mostly for common variants)
- Gene-level analysis (for rare variants)

ProDiGY WES
 Youth-onset
 T2D cases $\mathrm{N}=3,660$

Matched cases ($\mathrm{N}=3,005$) and controls ($\mathrm{N}=9,777$) in 7 clusters

Single variant association and Gene-level burden test

Statistics are well-calibrated

Four exome-wide significant associations

Three exome-wide significant gene-level associations

- Additionally: 2.1\% of cases carry a monogenic diabetes causing variant

Example association: HNF1A

Substantial enrichment in diabetes-relevant gene sets

- Gene sets defined by HPO terms

HP_ABNORMAL_WAIST_TO_HIP_RATIO
HP_INSULIN_RESISTANCE

Three categories

Enrichments are due to many genes

Tiers of candidate genes

- Tier 1: Exome-wide significant genes (MC4R, HNF1A, ATXN2L)
- Tier 2: among top 50 and causal for monogenic diabetes or T2D (GCK, SLC30A8, ABCC8, PAM)
- Tier 3: among the top 50 and in an enriched HPO gene set (RFX6, GHRL, HESX1, SIX3)
- Tier 4: $\mathrm{p}<0.05$ and in a diabetes-relevant gene set (38 additional genes)

Both common and rare variants are enriched in ProDiGY

(relative to adult-onset T2D cases)

Both common and rare variants explain more heritability

 (relative to adult-onset T2D cases)

Both common and rare variants explain more heritability

 (relative to adult-onset T2D cases)

As a population, youth-onset T2D cases are enriched for all types of genetic risk factors

2.1\% carry monogenic variants (MODY cases)
5.0-fold more rare variants than adult-onset cases
3.4-fold more common variants than adult-onset cases
skew towards common variants in absolute terms skew towards rare variants relative to adult-onset T2D

What about individually?

Cases due to MODY mutations are phenotypically different

Start with cases "explained" by rare or common variants

No clear dividing line between cases due to rare vs. common variants

- But, a substantial amount of heterogeneity across cases

Cases due to rare vs. common variants are phenotypically different

Model: allelic series are pervasive across genes and pathways

- Mutations causal for monogenic diabetes mellitus - Mutations with moderate effect on insulin levels - Mutations with moderate effect on glucose levels - Mutations with moderate effect on TD2M risk - Mutations with weak effect on insulin levels - Mutations with weak effect on glucose levels - Mutations with weak effect on TD2M risk

Model: allelic series are pervasive across genes and pathways

Model: allelic series are pervasive across genes and pathways

Monogenic DM Neonatal DM: Lipodystrophy:

What's next?

Biological insights
vs.

Genetic architecture

$$
\begin{aligned}
& \text { Genetic archifectues } 0
\end{aligned}
$$

$$
\begin{aligned}
& 01000010101010101101101001
\end{aligned}
$$

3:29:07.62

```
screencapture
```

Zotero
Google Chrome Helper (Renderer)
Slack Helper (Renderer)
Google Chrome Helper
圈 Activity Monitor
Slack Helper (GPU)
Google Chrome Helper (Renderer)
(9) Cisco AnyConnect Secure Mobility Clien
se_agent
com.cisco.anyconnect.macos.acsockext
ServiceDaemon
4:53:08.90

$$
0.48
$$

3:37:59.23
3:40:56.17
2:52:45.36

$$
\begin{array}{r}
45: 24.27 \\
32.79
\end{array}
$$

8:07:36.75
3:41:1
\rightarrow
1.1
1.0

repmgr
 repmgr

1.0
0.8

JamfDaemon

httpd
mdworker_shared

Screen Shot

sysmond
sharingd
Google Chrome Helper (Renderer)
airportd

fseventsd

Where will genetic associations lead us?

Can we lead human genetics instead?

Reverse genetics

Our organizing question

What does human genetic data tell us about a gene?
explicitly ôr implicitly

1. Make the data available

ACCELERATING MEDICINES PARTNERSHIP (AMP)

Providing data and tools to promote understanding and treatment of common metabolic diseases

2. Help interpret the data

Gene	GWAS	Exome
SIN3A	Minimum $\mathrm{p}=9.2 \mathrm{e}-16$	$\mathrm{p}=0.59$
FOXO1	Minimum $\mathrm{p}=1.91 \mathrm{e}-5$	$\mathrm{p}=0.036$

2. Help interpret the data

	oding variant	Compelling 95\% \| 99\%	Compelling 95\% \| 99%	Compelling $99 \% \mid 9 \%$	Compelling 99\% \| 99\%	Compelling 99\% \| 99\%	
	Nearest gene	Very Strong 70\% \| 90\%	Very Strong 80\% \| 95\%	Extreme 90\% \\| 95\%	Compelling 99\% \| 99\%	Compelling 99\% \| 99\%	
	Coding variant	Strong 50\% \| 85\%	Very Strong 60\% \| 90\%	Very Strong 75\% \| 95\%	Compelling 95\% \| 99\%	Compelling 99\% \| 99\%	
	GWAS locus	Moderate 15\% \| 40\%	Moderate 20\% \\| 55\%	Moderate 30\% \| 70\%	Very Strong 75\% \| 95\%	Compelling 99\% \| 99\%	
	No evidence	No evidence 5\% \| 20\%	Anecdotal 5\% \| 25\%	Moderate 15\% \| 45\%	Strong $50 \% \text { \| 85\% }$	Compelling 95\% \| 99\%	
		No evidence $p \geq 0.1$	$\begin{aligned} & \text { Weak } \\ & p<0.1 \end{aligned}$	Nominal $p<0.05$	$\begin{gathered} \text { Strong } \\ p<1 \times 10^{-3} \end{gathered}$	Exome-wide $p<2.5 \times 10^{-6}$	
		Rare Variation					

3. Build ever more sophisticated models

Expression pattern
Mouse phenotypes
Literature terms

3. Build ever more sophisticated models

4. Extend beyond genes to pathways

Example pathways Diabetes component pathways

Glucagon secretion/action

Incretin

 secretion/actionAdipose distribution

Not diabetes

4. Extend beyond genes to pathways

Proinsulin
номA-B

FlannickLab

We are always seeking collaborators and motivated new members!

Contact flannick@broadinstitute.org or http://flannicklab.org

[^0]: * Residual is after adjustment for age, gender, diabetes.

