

Making Human Genetic Data More Useful

Jason Flannick

flannick@broadinstitute.org flannicklab.org

In 2015...

https://corporatelearning.hms.harvard.edu

Type 2 Diabetes 26K exomes 80K exome chips 150K GWAS

52K target prioritization Overview presentation

6/9/17

	Table 1.	Unbiased	Exo		
C					
	Gene	Entrez			
	Symbol	Gene ID	Var		
	In the second se				

NI

SFI1	
MC4R	
PAM	
SLC30A8	
IGFBPL1	
ING3	
FABP6	
GPR6CA	
NCOA6	
ST3GAL5	
SPTLC1	

Why were these data not useful?

And what can we do about it?

Back in 2008...

The case of the missing heritability

When scientists opened up the human genome, they expected to find the genetic components of common traits and diseases. But they were nowhere to be seen. Brendan Maher shines a light on six places where the missing loot could be stashed away.

Genetic associations

Genome Research Limited

GWAS

- Unbiased interrogation of all common variants in the genome Responsible for ~90% of variants in any one individual
 - Analyze all variants by only genotyping <500k

Disease	Number of loci	Froportion of heritability explained	Heritability measure
Age-related macular degeneration ⁷²	5	50%	Sibling recurrence risk
Crohn's disease ²¹	32	20%	Genetic risk (liability)
Systemic lupus erythematosus ⁷³	6	15%	Sibling recurrence risk
Type 2 diabetes ⁷⁴	18	6%	Sibling recurrence risk
HDL cholesterol ⁷⁵	7	5.2%	Residual* phenotypic variance
Height ¹⁵	40	5%	Phenotypic variance
Early onset myocardial infarction ⁷⁶	9	2.8%	Phenotypic variance
Fasting glucose ⁷⁷	4	1.5%	Phenotypic variance
* Residual is after adjustment for age, gender, diabete	S.		

The case of the missing heritability

When scientists opened up the human genome, they expected to find the genetic components of common traits and diseases. But they were nowhere to be seen. Brendan Maher shines a light on six places where the missing loot could be stashed away.

Are Rare Variants Responsible for Susceptibility to Complex Diseases?

Jonathan K. Pritchard

Department of Statistics, University of Oxford, Oxford

Genetic Heterogeneity in Human Disease

Jon McClellan^{1,*} and Mary-Claire King^{2,*} ¹Department of Psychiatry ²Departments of Medicine and Genome Sciences University of Washington, Seattle, WA 98195-7720, USA *Correspondence: drjack@uw.edu (J.M.), mcking@uw.edu (M.-C.K.) DOI 10.1016/j.cell.2010.03.032

OPEN O ACCESS Freely available online

Rare Variants Create Synthetic Genome-Wide Associations

Samuel P. Dickson^{1,2}, Kai Wang³, Ian Krantz^{3,4,5}, Hakon Hakonarson^{3,4,5}, David B. Goldstein^{1*}

susceptibility to common diseases

Walter Bodmer & Carolina Bonilla

Common Genetic Variation and Human Traits

David B. Goldstein, Ph.D.

Clan Genomics and the Complex Architecture of Human Disease

James R. Lupski,^{1,2,3,*} John W. Belmont,^{1,2} Eric Boerwinkle,^{4,5} and Richard A. Gibbs^{1,5,*}

PLOS BIOLOGY

Common and rare variants in multifactorial

APPLICATIONS OF NEXT-GENERATION SEQUENCING

Uncovering the roles of rare variants in common disease through whole-genome sequencing

Elizabeth T. Cirulli and David B. Goldstein

Are rare variants responsible for a significant fraction of disease heritability?

а	Percent of constrained		Direct selection on trait			Selection parameter (7)				Un to s				
	in disease ta	arget	τ =	= 1	τ =	0.5	τ =	0.4	τ =	0.3	τ =	0.2	τ =	0.1
Small disease target, few causal loci	0.025%	<i>T</i> = 75 kb <i>N</i> = 30 loci	$\uparrow \\ \downarrow$	$\uparrow \\ \downarrow$	↑ ↑	↑ ↑	1	↑ ↑	1	↑ ↑	1	↑ ↑	1	↑ ↑
	0.08%	<i>T</i> = 250 kb <i>N</i> = 100 loci	\uparrow	\downarrow	1	1	1	1	1	1	1	1	1	1
	0.25%	<i>T</i> = 750 kb <i>N</i> = 300 loci	\uparrow	\downarrow				1	1		 ↑	\uparrow	1	1
Target size (<i>T</i>)	0.42%	7 = 1.25 Mb <i>N</i> = 500 loci	\downarrow	\rightarrow							1		1	1
	0.67%	<i>T</i> = 2 Mb <i>N</i> = 800 loci	\downarrow	\rightarrow		\rightarrow					•		1	
	0.83%	<i>T</i> = 2.5 Mb <i>N</i> = 1,000 loci	i ↓	\leftarrow	\downarrow	\rightarrow							•	
Highly polygenic disease	1.25%	<i>T</i> = 3.75 Mb <i>N</i> = 1,500 loc	i ↓	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow						

Could rare "high impact" variants suggest biological or clinical insights?

ncoupled selection $\tau = 0$

Low LDL cholesterol in individuals of African descent resulting from frequent nonsense mutations in PCSK9

Jonathan Cohen¹⁻³, Alexander Pertsemlidis^{2,3}, Ingrid K Kotowski⁴, Randall Graham¹, Christine Kim Garcia¹⁻³ & Helen H Hobbs¹⁻⁴

Kathiresan, N Engl J Med 2008

Type 2 diabetes is the most common metabolic disease

- Affects \approx 415m people (10%) of population) with prevalence increasing
- T2D is characterized by high blood glucose due to insulin resistance and insulin deficiency
- Leading cause of cardiovascular disease, kidney failure, blindness, and premature death

Example: SLC30A8

- Encodes zinc transporter (ZnT8) expressed in pancreatic islets
- Zinc enables proper processing, storage, and secretion of insulin
- Pound 2009 GWAS association with unclear direction of effect Lemaire 2009

Study

Chimienti 2006

Sladek 2007

Dupuis 2010

Nicolson 2009

How would we target it?

Alteration	Protein activity	Zincco ntent	Insulin secretio n	Glu e le
Overexpression in vitro				
p.R325W				
Global mouse deletion				
Global mouse deletion				
Global mouse deletion			**	
Beta-cell mouse deletion		Ĺ		
Global mouse deletion				

Note: Table is a crude simplification

Glucose intolerant after high fat feeding Dependent on age, sex, and diet *** Normal fasting glucose but glucose intolerant

Identified from targeted sequencing

12 loss-of-function SLC30A8 mutations in 149,134 individuals

Flannick et al. Nature Genetics, 2014

Rare variants in complex disease: gene-level associations • Reflect aggregate effects of all variants in a gene

Cirulli et al, Nature Communications, 2020

An early success from targeted sequencing 12 loss-of-function SLC30A8 mutations in 149,134 individuals *p*=**1.7** x 10^{−6} Aggregate odds ratio: 0.34

a Variants

Control Flannick et al. Nature Genetics, 2014

a polygenic, common variant model for T2D

Nature 2016

The case of the missing heritability

When scientists opened up the human genome, they expected to find the genetic components of common traits and diseases. But they were nowhere to be seen. Brendan Maher shines a light on six places where the missing loot could be stashed away.

Are Rare Variants Responsible for Susceptibility to Complex Diseases?

Genetic Heterogeneity in Human Disease

susceptibility to common diseases

Common Genetic Variation and Human Traits

Clan Genomics and the Complex Architecture of Human Disease

Rare Variants Create Synthetic Genome-Wide

Common and rare variants in multifactorial

Uncovering the roles of rare variants in common disease through whole-genome sequencing

Flannick and Florez, Nature Reviews Genetics, 2016

Year

Problem: what are the genes?

• Usually only one (or a few) variants are causal

Civelek and Lusis, 2014

Data type 1: GWAS (common variants, high power, unclear gene)

Meanwhile, rare variants...

- When significant: direct links from disease to genes

When variants inactivate protein: directional link with disease risk

More recent (45,000 sample) exome sequencing

Three exome-wide significant gene-level associations

Gene–level associations

Flannick et al, Nature 2019

More recent (45,000 sample) exome sequencing

Enrichment of associations across diabetes-relevant genes

Even though the strongest rare variants (even in aggregate) contribute less to T2D than do the strongest common variants...

LVE of top cGWAS and exomes associations

Rank

...rare variant signals are likely widespread in disease genes and pathways

Flannick, Curr Diab Rep 2019

Further support for this model

Beyond type 2 diabetes

- Study design:
- Exome sequencing of 85,474 non-diabetic individuals
 - UKBB exomes (n=40,151; 100% European)
 - AMP-T2D exomes (n=45,323; 15.8% African American; 25.6% East Asian; 18.7% European; 18.0% Hispanic; and 22.2% South Asian)
- 24 quantitative traits
- Single variant analysis (mostly for common variants)
- Gene-level analysis (for rare variants)

Nonsynonymous Variants

HbA1C is commonly used in T2D diagnosis

Fasting Plasma Glucose (mg/dL)	Oral Glucose Tolerance Test (mg/dL)
≥ 126	≥ 200
100 - 125	140 — 199
≤ 99	≤139

Common variants and HbA1C

SNP 80 ~150,000 individuals 60 0 60 common log10BF variant 40 associations \odot \odot 0 20 2 3 5 1

19 20 2122 17 18 16 Х 15 14 Chromosome Wheeler et al. Nature Genetics, 2017

Cc

\bullet

Table 1.	(Continued)
----------	-------------

n As	sociat	ior	ariar Is can	its a be gr	and oupe	HbA ed into	1c 5 tw	o cla	asses	Associated with red bloo cell traits	d Associated with other glycemic t
SNP	Markername) Chr.	Position (bp)	Effect Allele	Other Allele	Gene	Status	Signals	Classification	European ancestry METAL <i>p</i> -value	Trans-ethnic MANTRA log10BF
45	rs10774625	12	110394602	G	А	ATXN2	Novel	Single	Erythrocytic	1.46 × 10 ⁻⁸	6.38
46	rs11619319	13	27385599	G	А	PDX1	Novel	Single	Glycemic	4.58×10^{-7}	8.38
47	rs576674	13	32452302	G	А	KL	Novel	Single	Glycemic	1.39 × 10 ⁻⁵	6.38
48	rs282587	13	112399663	G	A	ATP11A	Known	Single	Unclassified	1.70 × 10 ⁻¹²	13.92
49	rs9604573	13	113571085	Т	С	GAS6	Novel	Single	Unclassified	9.60 × 10 ⁻⁹	6.72
50	rs11248914	16	233563	Т	С	ITFG3	Novel	Single	Erythrocytic	2.56×10^{-14}	10.60
51	rs1558902	16	52361075	A	Т	FTO	Novel	Single	Unclassified	3 27 × 10 ⁻⁸	6.88
52	rs4783565	16	67307691	A	G	CDH3	Novel	Single	Erythrocytic	1.73 × 10 ⁻⁷	6.73
53	rs837763	16	87381230	Т	С	CDT1	Known	Single	Erythrocytic	1.68 × 10 ⁻²⁸	28.89
54	rs9914988	17	24207230	Α	G	ERAL1	Novel	Single	Erythrocytic	2.77 × 10 ⁻¹¹	11.34
55	rs2073285	17	73628956	С	Т	TMC6	Novel	Single	Unclassified	1.27×10^{-4}	6.47
56	rs1046896	17	78278822	Т	С	FN3KRP	Known	Single	Unclassified	4.46×10^{-64}	71.79
57	rs11086054	19	17107737	A	Т	MYO9B	Novel	Multiple	Unclassified	8.16 × 10 ⁻⁶	9.12
58	rs17533903	19	17117523	A	G	MYO9B	Known	Multiple	Erythrocytic	5.27 × 10 ⁻¹²	9.912
59	rs4820268	22	35799537	G	A	TMPRSS6	Known	Single	Erythrocytic	1.40×10^{-22}	20.79
60	rs1050828	Х	153417411	Т	С	G6PD	Novel	Single	Erythrocytic	NA*	NA

Wheeler et al. Nature Genetics, 2017

Different biological effects

future development of T2D

- ~2% of African-Americans could be misclassified due to G6PD variant

ES (95% CI) **Glycemic genetic score** European InterAct 1.05 (1.04, 1.06) 5.4e-22 166 FHS 1.08 (1.02, 1.14) 5.0e-03 170 ARIC 1.05 (1.02, 1.09) 1.0e-03 612 MESA 1.06 (1.00, 1.12) .045 174 1.05 (1.04, 1.06) 7.8e-27 Subtotal (I-squared = 0.0%, p = 0.848) African ARIC 0.98 (0.91, 1.06) .66 108 MESA 1.01 (0.94, 1.09) .783 818 Subtotal (I-squared = 0.0%, p = 0.623) 1.00 (0.95, 1.05) 0.902 Asian MESA 1.01 (0.92, 1.12) .806 SCHS 1.05 (1.03, 1.08) 1.3e-06 46 1.05 (1.02, 1.07) 7.2e-5 Subtotal (I-squared = 0.0%, p = 0.452) Heterogeneity between groups: p = 0.111 Overall (I-squared = 0.0%, p = 0.538) 1.05 (1.04, 1.06) 2.5e-29 1.1 1.2 .9

Glycemic associations, but not erythrocytic associations, predict

Erythrocytic genetic score	e		
European			
InterAct	-	1.00 (0.99, 1.02)	.552
FHS		0.95 (0.89, 1.02)	.127
ARIC		0.99 (0.95, 1.03)	.536
MESA		0.96 (0.90, 1.03)	.219
Subtotal (I-squared = 34.1%, p = 0.208)	$\mathbf{\Phi}$	1.00 (0.99, 1.01)	.938
African			
ARIC		0.97 (0.95, 1.00)	.031
MESA		0.99 (0.96, 1.02)	.488
Subtotal (I-squared = 0.0%, p = 0.366)	\sim	0.98 (0.96, 1.00)	.038
Asian			
MESA		1.07 (0.96, 1.20)	.245
SCHS	-	1.02 (0.99, 1.05)	.131
Subtotal (I-squared = 0.0%, p = 0.416)	\sim	1.02 (0.99, 1.05)	.114
Heterogeneity between groups: p = 0.039			
Overall (I-squared = 44.2%, p = 0.084)	\$	1.00 (0.99, 1.01)	.602
.9	1 1.1	1.2	

Wheeler et al. Nature Genetics, 2017

ES (95% CI)

How do these variants affect HbA1c diagnosis?

G6PD (rs1050828) Common

How do these variants affect HbA1c diagnosis?

Variation	Model
Rare	PIEZO1/G6PD
Common	Erythrocytic Variants

Expanding the model

on erythrocytic lifespan in mice

Significant associations in many sets of genes with known function

Evidence for associations across many genes

• Compared to rare variants in genes involved in glycemia in mice, rare variants in erythrocytic genes are more likely to decrease HbA1c

Putting this together in a polygenic score

Final model: 21,293 variants

Variation	Model
Rare	PIEZO1/G6PD
	Erythrocytic Genes
	Glycemic Genes
Common	Erythrocytic Variants
Combined	Erythrocytic PGS

**Diamonds scaled to number of reclassified individuals in the test sample

Model is highly polygenic

The case of the missing heritability

When scientists opened up the human genome, they expected to find the genetic components of common traits and diseases. But they were nowhere to be seen. Brendan Maher shines a light on six places where the missing loot could be stashed away.

Are Rare Variants Responsible for Susceptibility to Complex Diseases?

Jonathan K. Pritchard

Department of Statistics, University of Oxford, Oxford

Genetic Heterogeneity in Human Disease

Jon McClellan^{1,*} and Mary-Claire King^{2,*} ¹Department of Psychiatry ²Departments of Medicine and Genome Sciences University of Washington, Seattle, WA 98195-7720, USA *Correspondence: drjack@uw.edu (J.M.), mcking@uw.edu (M.-C.K.) DOI 10.1016/j.cell.2010.03.032

OPEN O ACCESS Freely available online

Rare Variants Create Synthetic Genome-Wide Associations

Samuel P. Dickson^{1,2}, Kai Wang³, Ian Krantz^{3,4,5}, Hakon Hakonarson^{3,4,5}, David B. Goldstein^{1*}

susceptibility to common diseases

Walter Bodmer & Carolina Bonilla

Common Genetic Variation and Human Traits

David B. Goldstein, Ph.D.

Clan Genomics and the Complex Architecture of Human Disease

James R. Lupski,^{1,2,3,*} John W. Belmont,^{1,2} Eric Boerwinkle,^{4,5} and Richard A. Gibbs^{1,5,*}

PLOS BIOLOGY

Common and rare variants in multifactorial

APPLICATIONS OF NEXT-GENERATION SEQUENCING

Uncovering the roles of rare variants in common disease through whole-genome sequencing

Elizabeth T. Cirulli and David B. Goldstein

Flannick, Curr Diab Rep 2019

Data type 1: GWAS (common variants, high power, unclear gene)

Data type 2: Exomes (rare variants, low power, clear gene)

Signals across many genes

Why were these not useful?

SFI1	
MC4R	
PAM	
SLC30A8	
IGFBPL1	
ING3	
FABP6	
GPR6CA	
NCOA6	
ST3GAL5	
SPTLC1	

SFI1	
MC4R	
PAM	
SLC30A8	
IGFBPL1	
ING3	
FABP6	
GPR6CA	
NCOA6	
ST3GAL5	
SPTLC1	

No known mechanism Already a target Not interested in pancreas Not interested in pancreas No known mechanism No known mechanism Undesirable expression pattern Not interested in islets Undesirable expression pattern Not interested in pathway Not interested in pathway

Forward vs. reverse genetics

Reverse genetics

Our organizing question What does human genetic data tell us about a gene? explicitly or implicitly

Benefit

Do people use human genetics in this way?

- Reviewed Nature/Science/Cell papers from last 3 years
- Catalogued every paper that reported a diabetes/glucose/insulin gene
- Examined how many referenced human genetic support
- **Result**: 4 out of 35 articles referenced human genetics

Dornbos et al, Cell Metabolism 2022

Gene	PMID/Citation	Journal	Type of Evidence	Reference Human Genetics
PPARGC1A	28340340 (Sharabi et al., 2017)	Cell	mouse, cell culture	-
STUB1	28431247 (Tawo et al., 2017)	Cell	C elegans, Drosophila melanogaster, cell culture	Yes
TBK1	29425491 (Zhao et al., 2018)	Cell	mouse, cell culture	-
ZMPSTE24	29526462 (Kayatekin et al., 2018)	Cell	yeast, cell culture	Yes
LEPR	29670283 (Xu et al., 2018)	Nature	mouse, cell culture	-
VDR BRD9 BRD7	29754817 (Wei et al., 2018)	Cell	mouse, cell culture	Yes
PIK3CA PIK3CB PIK3CG PIK3CD PTEN	30051890 (Hopkins et al., 2018)	Nature	mouse, cell culture	-
PIK3CA PIK3CB HRAS NRAS KRAS	30982732 (Molinaro et al., 2019)	Cell Metabolism	mouse, cell culture	-
ALOX12	31353262 (Leiria et al., 2019)	Cell Metabolism	human study, mouse, cell culture	-
PAX6	31607563 (Singer et al., 2019)	Cell Metabolism	human study, mouse, cell culture	-
EIF2AK3	31543404 (Chen et al., 2019)	Cell Metabolism	mouse, cell culture	-
CPT1A SLC25A20	31378464 (Nicholas et al., 2019)	Cell Metabolism	human study, Cell Culture	-
GSK3A GSK3B	30879985 (Sacco et al., 2019)	Cell Metabolism	human study, mouse, cell culture	-
VDAC1	30293774 (Zhang et al., 2019)	Cell Metabolism	human study, cell culture	-
C3 ATG16L1	30293775 (King et al., 2019a)	Cell Metabolism	human study, mouse, rat, cell culture	-
PRKCE	30318338 (Brandon et al., 2019)	Cell Metabolism	mouse	-
OR4M1	31230984 (Li et al., 2019)	Cell Metabolism	mouse, cell culture	-
TREM2	31257031 (Jaitin et al., 2019)	Cell	mouse	-
CERS6 MFF	31150623 (Hammerschmidt et al., 2019)	Cell	mouse, cell culture	-
FOXK1 FOXK2	30700909 (Sukonina et al., 2019)	Nature	mouse, cell culture	-
SLC25A5	31528845 (Seo et al., 2019)	Nature Metabolism	human study, mouse, cell culture	-

Gap 1: human genetic data is not accessible

through a simple web interface

ACCELERATING MEDICINES PARTNERSHIP (AMP)

Costanzo et al, Accepted in principle at Cell Metabolism

Common Metabolic Diseases Genome Atlas

Atlas

457 datasets, 473 traits

Filter Datasets						
	Search by phenotypes	Filter by phenotype group	Filter by data f	type		
New Datasets (Click datasets for description)						
Dataset		Access	Samples	Ancestry	Technology	С
GIANT 2022 height GWAS: trans-ancestry		Open access	5314291	Mixed ancestry	GWAS	CC
Heart failure 2022 GWAS: trans-ancestry		Open access	1665481	Mixed ancestry	GWAS	
GIGASTROKE 2022 GWAS: trans-ancestry		Open access	1614080	Mixed ancestry	GWAS	
Global Biobank Meta-analysis Initiative 2022 POAG GWAS: trans	s-ancestry		1487447	Mixed ancestry	GWAS	
Global Biobank Meta-analysis Initiative 2022 stroke GWAS: trans	-ancestry		1370901	Mixed ancestry	GWAS	
Global Biobank Meta-analysis Initiative 2022 heart failure GWAS	: trans-ancestry		1354739	Mixed ancestry	GWAS	
GIGASTROKE 2022 GWAS: European ancestry		Open access	1308460	European	GWAS	
Global Biobank Meta-analysis Initiative 2022 cardiomyopathy GV	VAS: trans-ancestry		1193060	Mixed ancestry	GWAS	
Global Biobank Meta-analysis Initiative 2022 POAG GWAS: Euro	pean ancestry		1172905	European	GWAS	
Global Biobank Meta-analysis Initiative 2022 stroke GWAS: Euro	pean ancestry		1039382	European	GWAS	
Global Biobank Meta-analysis Initiative 2022 heart failure GWAS	: European ancestry		1020441	European	GWAS	
Global Biobank Meta-analysis Initiative 2022 cardiomyopathy GV	VAS: European ancestry		922988	European	GWAS	
Global Biobank Meta-analysis Initiative 2022 heart failure GWAS	: females, trans-ancestry		633306	Mixed ancestry	GWAS	
Global Biobank Meta-analysis Initiative 2022 stroke GWAS: fema	les. trans-ancestry		601704	Mixed ancestry	GWAS	
Global Biobank Meta-analysis Initiative 2022 POAG GWAS: fem:	ales trans-ancestry		582981	Mixed ancestry	GWAS	

View complementary data at the **Common Metabolic Diseases Genome**

Processing pipeline

Data sources

Costanzo et al, Accepted in principle at Cell Metabolism

rs1234567 **T2D**

N=50,000 p=0.27

N=100,00 0 p=6.4e-4

1. Minimum p-value

rs1234567 **T2D**

N=50,000 p=0.27

N=100,00 0 p=6.4e-4

N=10,000 p=1.7e-10

- 1. Minimum p-value
- 2. Largest dataset

rs1234567 **T2D**

- 1. Minimum p-value
- 2. Largest dataset
- 3. Meta-analysis

- 1. Minimum p-value
- 2. Largest dataset
- 3. Meta analysis

N=10,000 p=1.7e-10

N=30,000

p=2.4e-2

4. Bottom-line

Bottom-line method is more accurate Replication rate comparison

Method	Replicated	Total	Rate
Bottom-line	1628	2001	81.4%
Largest	1561	2200	71.0%
Min-P	1681	2579	65.2%
Naïve	1903	3058	62.2%

*In this case: Largest means "largest after validation dataset is removed"

Associations in the T2DKP

T2D, Fasting glucose, Fasting insulin, HbA1C

Associations in the T2DKP

T2D, Fasting glucose, Fasting insulin, HbA1C

c Associations compared to other resources

e Associations from public summary statistic datasets

Costanzo et al, Accepted in principle at Cell Metabolism

Access mechanisms

Costanzo et al, Accepted in principle at Cell Metabolism

Cell **Selective Inhibition of FOXO1 Activator/Repressor Balance Modulates Hepatic Glucose Handling**

Graphical Abstract

AIUCIE

Authors

Fanny Langlet, Rebecca A. Haeusler, Daniel Lindén, ..., Ling Wang, Christoph Buettner, Domenico Accili

Correspondence

da230@columbia.edu

In Brief

The transcriptional output of FOXO1 can be selectively modulated in a way that might reduce adverse effects of insulin sensitizers.

							Home	Data	Tools	KP Labs	Help	Information	Contact	Login
t page level	parameter	S												
				2h 07) area		ild Effect		d dine etia		4	nata (na		ala Carati	
All coordina	ates are li	n the ng	19 (GR	un <i>37</i>) gei	nome bl	liid. Επές	i sizes an	a airectio	ons reter	to the alter	nate (noi	n-reterence) all	ele. Geneti	C
flows.														
cestry:	All) 🕕													
lization.														
											Viev	w associations by	v phenotype g	group
											_			
								tinine)						
								um crea			_			
			E					at (seru			UACR)			
			entratio					FR-cre	_	Ô	e ratio (
			n conce	AST)				₽eG	litrogen	ystatin	eatinine	c		
			noglobi	erase (d urea n	serum c	lin-to-cr	xcretio		
unt	count	ount	ular her	lotransf	sterol	sterol			Blood	R-cys (s	y album	ssium e		
itelet co	nocyte	rophil c	orpusci	ite amir	al chole	L choles				eGFI	Urinar	Iry pota		
▲ Pla	Mo	Neut	Mean c	Asparta	Tot		trate			V	▲	+ Urina - Serum		
												×		
				THERATIC	LIPIDS		METABO	PENgl						
							- CIT	8						

Rare variant gene-level associations for FOXO1 0

Gap 2: Interpreting genetic associations

Gene	GWAS	Exome
SIN3A	Minimum p=9.2e-16	p=0.59
FOXO1	Minimum p=1.91e-5	p=0.036

Converting frequency differences to probabilities Example: election forecasting

Who's ahead in the national polls?

An updating average of 2020 presidential general election polls, accounting for each poll's quality, sample size and recency

Applied to genetics Use observed association strength to update prior belief in a gene

Bayes Factor (BF)

An important detail What is the prior?

• **Conservative:** 1 / 20,000 ("we know there must be at least one")

Unprincipled: Investigator defined ("how much would you wager")

Measured: 5% ("1,000 T2D genes seems more reasonable than 100 or 10,000")

Updating the prior

- Nearby a GWAS association, we know:
 - Genes with causal coding variants are almost certainly causal • Genes nearest to the signal are causal genes ~70% of the time Genes with a coding GWAS association are causal ~50% of the

 - time
- At least one gene in a GWAS region is the causal gene Given an observed rare variant association

$$ABF = \sqrt{V/(V+\omega)} * \exp(rac{\omegaeta^2}{2V(V+\omega)})$$

$$V = variance$$

 β = beta

= prior allelic variance

Simple rules for combining these data

C	Causal coding variant	Compelling 95% 99%	Compelling 95% 99%	Compelling 99% 9%	Compelling 99% 99%	Compelling 99% 99%			
riatio	Nearest gene	Very Strong 70% 90%	Very Strong 80% 95%	Extreme 90% 95%	Compelling 99% 99%	Compelling 99% 99%			
on Va	Coding variant	Strong 50% 85%	Very Strong 60% 90%	Very Strong 75% 95%	Compelling 95% 99%	Compelling 99% 99%			
ommo	GWAS locus	Moderate 15% 40%	Moderate 20% 55%	Moderate 30% 70%	Very Strong 75% 95%	Compelling 99% 99%			
	No evidence	No evidence 5% 20%	Anecdotal 5% 25%	Moderate 15% 45%	Strong 50% 85%	Compelling 95% 99%			
		No evidence <i>p≥</i> 0.1	Weak <i>p</i> <0.1	Nominal <i>p</i> <0.05	Strong p<1x10 ⁻³	Exome-wide p<2.5x10 ⁻⁶			
		Rare Variation							

Dornbos et al, Cell Metabolism 2022

A peek at a more comprehensive model

HuGE Calculator

Start by entering a gene name, then choose a phenotype. Browse a list of all available phenotypes here.

Build search criteria

Compelling: HuGE Score >= 350 Extreme: >=100 Very Strong: >=30 Strong: >=10 Moderate: >=3 Anecdotal: >1 No Evidence: <=1								
Compelling	Extreme	Very Strong	Strong	Moderate	Anecdotal	No Evidence		

Build search criteria

HuGE score 45 falls in Very Strong evidence range

Compelling: HuGE Score >= 350 Extreme: >=100 Very Strong: >=30 Strong: >=10 Moderate: >=3 Anecdotal: >1 No Evidence: <=1							
Compelling	Extreme	Very Strong	Strong	Moderate	Anecdotal	No Evidence	

Posterior probability_

How is PPA calculated?

The posterior probability of association (PPA) is a measure of how different "prior" beliefs in a gene's disease-relevance are modified by the HuGE score. Priors may be defined using various criteria, such as an estimate of the total number of genes impacting a common disease, or experimental results bearing on the gene's role in a disease.

	Suggested prior	Posterior probability
	0.2	0.9183673
	0.05	0.703125
Set prior		

	Phenotype			
	Select a phenotype			
ON SIN3A X	Type 2 diabetes (T2D) X			
			45(Common variation BF) *	1(Rare variation BF) = 45
		*BF=Bayes Factor	*HuGE Score(combined evidence) = BF of comm	on variation X BF of rare variation
5	<common bf<="" th="" variation=""><th></th><th></th><th></th></common>			
1	<rare (rese<="" bf="" th="" variation=""><th>et Prior Allelic variance)</th><th></th><th></th></rare>	et Prior Allelic variance)		
5				

Knowledge Portal Network

Common Metabolic Diseases Knowledge Portal Learn more

Cerebrovascular Disease Knowledge Portal Learn more

Lung Disease **Knowledge Portal** Learn more

Cardiovascular Disease Knowledge Portal Learn more

Sleep Disorder

Knowledge Portal

Learn more

Lipid Droplet

Knowledge Portal

Learn more

Reproductive System Knowledge Portal Learn more

Type 1 Diabetes Knowledge Portal Learn more

Non-Additive **Genetic Effects** Knowledge Portal Learn more

The Association to Function portal combines all of these portals in one location <u>a2fkp.org</u>

Problem:

What is the trait?

Type 2 diabetes...

... is not really a single disease

McCarthy, Diabetologia, 2017

If you've been diagnosed by your doctor with diabetes, but do not fit the usual pattern of either type 1 or type 2 diabetes, you may be eligible to join RADIANT.

There is currently little information and resources for atypical diabetes. RADIANT wants to change this.

Learn More

Example case

- "...diagnosed with diabetes at age 18..."
- "...highest HbA1C 8.7%..."
- "...history of ADHD, depression, tinnitus, and hyperlipidemia..."
- "...father diagnosed with diabetes at age 33 when not overweight; while overweight..."

two grandparents and an uncle diagnosed with diabetes later in life

Sifting through genes and "post-hoc storytelling"

flannick								preferences logout
Select Sample	Search for Phenotype by Gene	Search for Genes	Phenotype Input	Codex	User Codex	Reanalysis		
Institution: Rad	iant • Batch: RAD-0157	•		Filter for:			Advanced Filter	Export

	Sample D	Add to Report	Comment	Gene P 🍸	Pathogenic - Disease	Inher. 🍸	Chr:Pos 🍸	Mutation Type	Frequency	Allele Frac 🍸	Flag	Blacklist 🍸
٠	RAD-0157		Edit	• FOXD4L2 CI	[CM]		9:42719279	 Frameshift 	2603/23995 (10.8 [,]	77:250	• ENS, DB, G	
•	RAD-0157		Edit	• FOXD4L4 CI			9:70427684	 Frameshift 	2605/23985 (10.8)	89:250	• FE, LE, ENS,	
•	RAD-0157		Edit	 MUC2 	[CM]	Complex	11:1092801	 Frameshift 	10673/31925 (33.4	112:250	 ENS, DB 	
•	RAD-0157		Edit	 MUC2 		Complex	11:1092852	 Frameshift 	2682/23904 (11.2	54:250	 ENS, Q, DB 	
•	RAD-0157		Edit	• CELA1	[CM]		12:51740413	 Frameshift 	3289/24521 (13.4	77:96	• FE, ENS, N, I	
•	RAD-0157		Edit	• CELA1	[CM]		12:51740414	 Frameshift 	3293/24531 (13.4)	77:101	• FE, ENS, N, I	
•	RAD-0157		Edit	 MUC4 		Complex	3:195508108	• Nonsynonymou:	358/21374 (1.675	81:250	• DB	
•	RAD-0157		Edit	 CHRNA7 	Schizophrenia, neurophysiologic defect ir	AD	15:32449874	 Frameshift 	1339/22587 (5.92	53:250	• ENS, DB, MN	
•	RAD-0157		Edit	 BCLAF1 			6:136582401	 Splicing 	18/5706 (0.315%)	17:66	• DB, MM	
•	RAD-0157		Edit	 AASDH 			4:57244314	 Splice region 	140/24524 (0.571	88:175	• DB	
•	RAD-0157		Edit	• TAAR6			6:132891756	• Nonsynonymou:	735/128964 (0.57	132:250	• FE, LE, DB	
•	RAD-0157		Edit	RIMBP3C UI			22:21903306	 Frameshift 	(0%) GNO	34:156	• FE, LE, ENS,	
•	RAD-0157		Edit	 MIEF1 			22:39908419	• Nonsynonymou:	1015/129072 (0.7	69:178	• DB	
•	RAD-0157		Edit	• DPP4			2:162890142	• Nonsynonymou:	688/127354 (0.54	46:114	• DB, MM	
•	RAD-0157		Edit	• WWC2			4:184205430	• Nonsynonymou:	790/128630 (0.61	87:178	• DB	
•	RAD-0157		Edit	 CELSR1 	Neural tube defects (NTD) [MIM:182940]	Complex	22:46773124	 Cryptic Splice (I 	5/21477 (0.023%)	113:250	• ENS, DB, MN	
•	RAD-0157		Edit	 DNAJA4 WD 			15:78572759	Nonsynonymou:	25/21359 (0.117%	99:204	 LE, DB, G 	
٠	RAD-0157		Edit	 CEP350 			1:180053158	• Nonsynonymou:	60/7484 (0.802%)	86:184	• DB	
•	RAD-0157		Edit	 MMP27 			11:10256582	• Nonsynonymou:	322/35356 (0.911	31:59	• DB	
•	RAD-0157		Edit	 NRAP 			10:11536458	Nonsynonymou:	939/129150 (0.72	72:175	• DB	
	RAD_0157		Edit	SMVD1			2.88100081		255/117678 (0.21	126.250	DR G	\square
					H (I	1-100 of 1	113 🕑 🕑				CODIFIED	GENOMICS

What about big data from common traits?

Genotype data

500,000

July

2017

Whole exome sequencing data

50,000

March 2019

Whole exome sequencing data

200,000

Whole genome sequencing

200,000

Est. Q3

2021

October 2020

UK Biobank

Intuitively, T2D genes are logical candidates

Flannick et al, 2016

Model: mutations in a pathway cause similar phenotypes

Supported anecdotally

Flannick et al, 2016

Nature Reviews | Endocrinology

Supported anecdotally

Patterns of trait associations for T2D GWAS SNPs

The extent to which we can "transfer" associations across similar diseases depends on the extent to which phenotypic similarity predicts genetic similarity

And the extent to which rare and common diseases lie on a "phenotypic continuum"

The ProDiGY study of T2D in youth

– 15% of new diabetes cases in whites, 46-86% in minorities

Incidence of ~3,700 cases/year and increasing, particularly ages 10-19

Samples

- SEARCH for Diabetes in Youth
 - Longitudinal follow up to assess na history and complication risk factor
 - Active registry of youth diagnosed diabetes at age < 20
- TODAY

- Clinical trial of ages 10-17 to comp treatment efficacy of Metformin vs Metformin+Lifestyle Intervention vs Metformin+Rosiglitazone
- BMI above 85th percentile
- Both studies are multi-ethnic

	Ancestry	Samples
	African-American	1,491 (40.8%)
atural	East-Asian	62 (1.7%)
15 Mith	European	757 (20.7%)
VVILII	Hispanic	1,306 (35.9%)
	NA	34 (0.9%)
bare	Total	3,650

	Total	Male	Fen
Ν	3,650	1,294 (35.4%)	2,356 (64.
Current Age	15.2±3.0	15.1±3.1	15.4:
Age at Onset	13.6±2.3	13.3±2.3	14.1:

Analysis design

- Whole exome sequencing of 3,650 youth-onset T2D cases
- Match to controls from AMP-T2D exomes
 - Total analysis of 3,005 cases and 9,777 controls
- Single variant analysis (mostly for common variants)
- Gene-level analysis (for rare variants)

Statistics are well-calibrated

Single variant results

Gene-level results

Four exome-wide significant associations

Three exome-wide significant gene-level associations

• Additionally: 2.1% of cases carry a monogenic diabetes causing variant

Substantial enrichment in diabetes-relevant gene sets

 Gene sets defined by HPO terms

HP_ABNORMAL_WAIST_TO_HIP_RATIO -HP_INSULIN_RESISTANCE HP_INCREASED_BODY_WEIGHT

HP_PANCREATIC_HYPOPLASIA -HP_ABNORMAL_PANCREAS_SIZE -HP_TRANSIENT_NEONATAL_DIABETES_MELLITUS -HP_HYPOINSULINEMIA · HP_NEONATAL_INSULIN_DEPENDENT_DIABETES_MELLITUS -HP_MATURITY_ONSET_DIABETES_OF_THE_YOUNG -HP_ABNORMAL_PANCREAS_MORPHOLOGY -

HP_ABNORMALITY_OF_ENDOCRINE_PANCREAS_PHYSIOLOGY

HP_HYPERGLYCEMIA -

HP_GLUCOSE_INTOLERANCE ·

HP_ELEVATED_HEMOGLOBIN_A1C -

HP_ABNORMAL_ORAL_GLUCOSE_TOLERANCE -

HP_TYPE_II_DIABETES_MELLITUS -

HP_ABNORMAL_C_PEPTIDE_LEVEL ·

HP_IMPAIRED_GLUCOSE_TOLERANCE -

HP_ABNORMAL_BLOOD_GLUCOSE_CONCENTRATION -

HP_MATERNAL_DIABETES -

HP_INSULIN_RESISTANT_DIABETES_MELLITUS

HP_ABNORMAL_INSULIN_LEVEL

HP_PANCREATIC_ISLET_CELL_HYPERPLASIA -

Enrichments are due to many genes

Tiers of candidate genes

- **Tier 1:** Exome-wide significant genes (MC4R, HNF1A, ATXN2L)
- Tier 2: among top 50 and causal for monogenic diabetes or T2D (GCK, SLC30A8, ABCC8, PAM)
- Tier 3: among the top 50 and in an enriched HPO gene set (RFX6, GHRL, HESX1, SIX3)
- Tier 4: p<0.05 and in a diabetes-relevant gene set (38 additional genes)

Both common and rare variants are enriched in ProDiGY (relative to adult-onset T2D cases)

MAF

Both common and rare variants explain more heritability (relative to adult-onset T2D cases)

Tier 1 🖨 Tier 2 🖨 Tier 3 🛱 Tier 4

Both common and rare variants explain more heritability (relative to adult-onset T2D cases)

As a population, youth-onset T2D cases are enriched for all types of genetic risk factors

2.1% carry monogenic variants (MODY cases)
5.0-fold more rare variants than adult-onset cases **3.4-fold** more common variants than adult-onset cases

skew towards common variants in absolute terms skew towards rare variants relative to adult-onset T2D

What about individually?

McCarthy, Diabetologia, 2017

Cases due to MODY mutations are phenotypically different

Start with cases "explained" by rare or common variants

65.2%

MODY Rare variant score $OR \ge 5$ Rare variant score OR 3-5 Common variant score OR ≥ 5 Common variant score OR 3-5 Combined score OR ≥ 5 Combined score OR \geq 3-5

No clear dividing line between cases due to rare vs. common variants

But, a substantial amount of heterogeneity across cases lacksquare

Cases due to rare vs. common variants are phenotypically different

Summary: bridging the gap between monogenic and polygenic diabetes

5

But...

flannick								preferences logout
Select Sample	Search for Phenotype by Gene	Search for Genes	Phenotype Input	Codex	User Codex	Reanalysis		
Institution: Rad	iant • Batch: RAD-0157	•		Filter for:			Advanced Filter	Export

	Sample	Add to Report	Comment	Gene P 🍸	Pathogenic - Disease	Inher. 🍸	Chr:Pos 🍸	Mutation Type	Frequency	Allele Frac 🍸	Flag 🍸	Blacklist 🍸
٠	RAD-0157		Edit	• FOXD4L2 CI	[CM]		9:42719279	 Frameshift 	2603/23995 (10.8)	77:250	• ENS, DB, G	
•	RAD-0157		Edit	• FOXD4L4 CI			9:70427684	 Frameshift 	2605/23985 (10.8)	89:250	• FE, LE, ENS,	
•	RAD-0157		Edit	 MUC2 	[CM]	Complex	11:1092801	 Frameshift 	10673/31925 (33.4	112:250	 ENS, DB 	
•	RAD-0157		Edit	 MUC2 		Complex	11:1092852	 Frameshift 	2682/23904 (11.2)	54:250	• ENS, Q, DB	
٠	RAD-0157		Edit	 CELA1 	[CM]		12:51740413	 Frameshift 	3289/24521 (13.4	77:96	• FE, ENS, N, I	
•	RAD-0157		Edit	• CELA1	[CM]		12:51740414	 Frameshift 	3293/24531 (13.4)	77:101	• FE, ENS, N, I	
•	RAD-0157		Edit	 MUC4 		Complex	3:195508108	• Nonsynonymou:	358/21374 (1.675	81:250	• DB	
•	RAD-0157		Edit	 CHRNA7 	Schizophrenia, neurophysiologic defect in	AD	15:32449874	 Frameshift 	1339/22587 (5.92	53:250	• ENS, DB, MN	
•	RAD-0157		Edit	 BCLAF1 			6:136582401	 Splicing 	18/5706 (0.315%)	17:66	• DB, MM	
•	RAD-0157		Edit	 AASDH 			4:57244314	 Splice region 	140/24524 (0.571	88:175	• DB	
٠	RAD-0157		Edit	• TAAR6			6:132891756	• Nonsynonymou:	735/128964 (0.57	132:250	• FE, LE, DB	
•	RAD-0157		Edit	RIMBP3C UI			22:21903306	 Frameshift 	(0%) GNO	34:156	• FE, LE, ENS,	
•	RAD-0157		Edit	 MIEF1 			22:39908419	• Nonsynonymou:	1015/129072 (0.7	69:178	• DB	
•	RAD-0157		Edit	• DPP4			2:162890142	• Nonsynonymou:	688/127354 (0.54	46:114	• DB, MM	
•	RAD-0157		Edit	• WWC2			4:184205430	• Nonsynonymou:	790/128630 (0.61	87:178	• DB	
•	RAD-0157		Edit	 CELSR1 	Neural tube defects (NTD) [MIM:182940]	Complex	22:46773124	 Cryptic Splice (I 	5/21477 (0.023%)	113:250	• ENS, DB, MN	
•	RAD-0157		Edit	• DNAJA4 WD			15:78572759	• Nonsynonymou:	25/21359 (0.117%	99:204	• LE, DB, G	
•	RAD-0157		Edit	• CEP350			1:180053158	• Nonsynonymou:	60/7484 (0.802%)	86:184	• DB	
•	RAD-0157		Edit	 MMP27 			11:10256582	• Nonsynonymou:	322/35356 (0.911	31:59	• DB	
•	RAD-0157		Edit	 NRAP 			10:11536458	• Nonsynonymou:	939/129150 (0.72	72:175	• DB	
•	RAD_0157		Edit	SMVD1			2.88100081	Nonsynonymou:	255/117678 (0.21	126.250	DR G	
					(H) (H)	1-100 of 1	13 🕨 🖲				CODIFIED	GENOMICS

Versus...

Civelek and Lusis, 2014

A future vision

Build search criteria

HuGE score 45 falls in Very Strong evidence range

Compelling: HuGE Score >= 350 Extreme: >=100 Very Strong: >=30 Strong: >=10 Moderate: >=3 Anecdotal: >1 No Evidence: <=1							
Compelling	Extreme	Very Strong	Strong	Moderate	Anecdotal	No Evidence	

Posterior probability_

How is PPA calculated?

The posterior probability of association (PPA) is a measure of how different "prior" beliefs in a gene's disease-relevance are modified by the HuGE score. Priors may be defined using various criteria, such as an estimate of the total number of genes impacting a common disease, or experimental results bearing on the gene's role in a disease.

	Suggested prior	Posterior probability
	0.2	0.9183673
	0.05	0.703125
Set prior		

	Phenotype						
	Select a phenotype						
ON SIN3A X	Type 2 diabetes (T2D) X						
			45(Common variation BF) *	1(Rare variation BF) = 45			
		*BF=Bayes Factor *	*HuGE Score(combined evidence) = BF of comm	on variation X BF of rare variation			
5	<common bf<="" th="" variation=""><th></th><th></th><th></th></common>						
	<rare (rese<="" bf="" th="" variation=""><th colspan="6"><rare (reset="" allelic="" bf="" prior="" th="" variance)<="" variation=""></rare></th></rare>	<rare (reset="" allelic="" bf="" prior="" th="" variance)<="" variation=""></rare>					
5							

We are always seeking collaborators and motivated new members!

Contact flannick@broadinstitute.org or http://flannicklab.org

